Nonlinear Polymerization of Fibrinogen

  • R. Rigler
  • U. Larsson
  • B. Blombäck
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 39)


Conversion of fibrinogen into fibrin by a polymerization process is coupled to periodic conformational transitions which are induced by the catalytic cleavage of fibrinogen. During the polymerization a regular 3-dimensional network is formed. Its pore size, as well as the oscillatory transitions, depends on the activity of thrombin, which catalyses the cleavage of fibrinogen. The formation of the fibrin network appears as an ideal model system for studying the formation of ordered 3-dimensional biological structures from a random distribution of structural elements.


Enzyme Concentration Fibrin Network Imidazole Buffer Ideal Model System Dynamic Laser Light Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.E. Hall and H.S. Slayter: J. Biophys. Biochem, Cytol. 5, 11–15 (1959)CrossRefGoogle Scholar
  2. 2.
    L. Bachmann, W.W. Schmitt-Fumian, R. Hammel and K. Lederer: Makromol. Chimie 176, 2603–2618 (1975)CrossRefGoogle Scholar
  3. 3.
    K. Lederer and R. Hammel: Makromol. Chem. 176, 2619–2639 (1975)CrossRefGoogle Scholar
  4. 4.
    G. Marguerie and H.B. Stuhrmann: J. Mol. Biol. 102, 143.156 (1976)Google Scholar
  5. 5.
    U. Larsson, R. Rigler, B. Blombäck, K. Mortensen and R. Bauer: SPIVN In Structure Dynamics and Function of Biomolecules, ed. by A. Ehrenberg et al., Springer Series in Biophysics, Vol. 1 (Springer Series in Biophysics), p. 152–158Google Scholar
  6. 6.
    P. Wiltzius, W. Känzig. V. Hofmann and P.W. Straut: Biopolymers 20, 2035–2049 (1981)CrossRefGoogle Scholar
  7. 7.
    A.U. Acuna, J. Gonzalez-Rodrigues, M.P. Lillo and K. Razi Naqvi: Biophysical Chemistry 26, 63–70 (1987)CrossRefGoogle Scholar
  8. 8.
    U. Larsson, B. Blombäck and R. Rigler: Biochim. Biophys. Acta in press (1987)Google Scholar
  9. 9.
    B. Blombäck, P.H. Hogy, B. Gårdlund, B. Hessel and B. Kudryk: Throm. Res. 8, Suppl. II, 329–346 (1976)CrossRefGoogle Scholar
  10. 10.
    T.C. Laurent and B. Blombäck: Acta Chem. Scand. 12, 1875–1877 (1958)CrossRefGoogle Scholar
  11. 11.
    B. Blombäck and M. Okada: Thromb. Res. 25, 251–257 (1982)Google Scholar
  12. 12.
    B. Hessel, S. Stenbjerg, B. Judryk, L. Therkildsen and B. Blombäck: Throm. Res. 42, 21–37 (1986)CrossRefGoogle Scholar
  13. 13.
    B.J. Berne and R. Pecora: Dynamic Light Scattering, J.Wiley & Sons, New York 1976.Google Scholar
  14. 14.
    B. Blombäck, M. Okada, B. Forslind and U. Larsson: Biorheology 21, 93–104 (1984)Google Scholar
  15. 15.
    P. Glansdorff and I. Prigogine: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, London 1971zbMATHGoogle Scholar
  16. 16.
    B. Hess et al.: In Membranes, Dissipative Structures and Evolution, ed. by G. Nicolis and R. Lefever, Advances in Chemical Physcis, Vol. 29 (Wiley, New York), p. 137Google Scholar
  17. 17.
    S.C. Müller, Th. Plesser and B. Hess: Naturwissenschaften 73, 165–179 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • R. Rigler
    • 1
  • U. Larsson
    • 1
    • 2
  • B. Blombäck
    • 2
  1. 1.Department of Medical BiophysicsKarolinska InstituteStockholmSweden
  2. 2.Coagulation ResearchKarolinska InstituteStockholmSweden

Personalised recommendations