Potential Functions and Molecular Evolution

  • P. Schuster
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 39)


Selection and molecular evolution are often considered as processes on potential surfaces which are characterized as “fitness landscapes”. Two classes of potentials are particularly useful: “selection potential” for the selection process within a given population and “value landscapes” for evolutionary adaption. Among the various types of selection dynamics we distinguish rare and frequent mutation scenarios as well as different mechanisms for replication. The selection potential for independently replicating entities is a linear function of their concentrations. Evolutionary optimization leads to “corner equilibria” which represent pure states in the rare mutation scenario, or “quasispecies” if mutations occur frequently. The existence of a selection potential is a direct proof for the absence of complicated dynamics and dissipative structures. Dynamical systems for which no potential functions can be found are interesting in their turn because they may lead to oscillations and chaotic dynamics. Value landscapes provide direct insight into the course of evolutionary optimization. They are, however, very hard to determine even for the most simple examples which deal with “test-tube evolution”. We can discuss here only the results of a computer model which is thought to be representative also for real systems.


Sequence Space Evolutionary Optimization Gradient System Fitness Landscape Folding Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.A. Fisher: The Genetical Theory of Natural Selection (Oxford University Press, Oxford 1930) and 2nd revised ed. (Dover Publications, New York 1958)zbMATHGoogle Scholar
  2. 2.
    J.B.S. Haldane: The Causes of Evolution (Harper & Row, New York 1932)Google Scholar
  3. 3.
    S. Wright: Evolution and the Genetics of Populations, Vols. I–IV (The University of Chicago Press, Chicago (1968, 1969, 1977 and 1978)Google Scholar
  4. 4.
    C. Darwin: The Origin of Species (Everyman’s Library, Vol. 811, Dent, London 1967). The famous catchphrase of “survival of the fittest” is actually not due to Charles Darwin himself. It has been attributed to H. Spencer and appeared first in the 5th edition of the Origin of Species Google Scholar
  5. 5.
    M. Eigen: Naturwissenschaften 58, 465 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    M. Eigen, P. Schuster: The Hvpercvcle — A Principle of Natural Self-Organization (Springer Verlag, Berlin 1979). The booklet is a combined reprint of three papers: Naturwissenschaften 64, 541 (1977) and 65, 7 and 341 (1978)Google Scholar
  7. 7.
    M. Eigen: Chemica Scripta 26B, 13 (1986)Google Scholar
  8. 8.
    P. Schuster: Chemica Scripta 26B, 27 (1986)Google Scholar
  9. 9.
    C.K. Biebricher, M. Eigen, W.C. Gardiner: J. Biochem. 22, 2544 (1983)CrossRefGoogle Scholar
  10. 10.
    C.K. Biebricher, M. Eigen, W.C. Gardiner: J. Biochem. 23, 3186 (1984)CrossRefGoogle Scholar
  11. 11.
    C.K. Biebricher, M. Eigen, W.C. Gardiner: J. Biochem. 24, 6550 (1985)CrossRefGoogle Scholar
  12. 12.
    E. Domingo, R.A. Flavell, C. Weissmann: Gene 1, 3 (1976)CrossRefGoogle Scholar
  13. 13.
    E. Domingo, D. Sabo, T. Taniguchi, C. Weissmann: Cell 13, 735 (1978)CrossRefGoogle Scholar
  14. 14.
    E. Domingo, M. Davilla, J. Ortin: Gene 11, 333 (1980)CrossRefGoogle Scholar
  15. 15.
    J. Ortin, R. Najero, C. Lopez, M. Davilla, E. Domingo: Gene 11, 319 (1980)CrossRefGoogle Scholar
  16. 16.
    S. Fields, G. Winter: Gene 15, 207 (1981)CrossRefGoogle Scholar
  17. 17.
    D.E. Dykhuizen, D.L. Hartl: Microbiol. Rev. 47, 150 (1983)Google Scholar
  18. 18.
    M. Eigen: Ber. Bunsenges. Phys. Chem. 89, 658 (1985) This concept of representing genotypes by a point space was first introduced by I. Rechenberg: Evolutionsstrategie (F. Frommann Verlag, Stuttgart 1973)Google Scholar
  19. 19.
    M. Kimura: The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge 1983)Google Scholar
  20. 20.
    S. Spiegelmann: Quart. Rev. Biophys. 4, 213 (1971)CrossRefGoogle Scholar
  21. 21.
    M. Eigen, J. McCaskill, P. Schuster: J. Phys. Chem. (1987), in pressGoogle Scholar
  22. 22.
    T.R. Cech: Science 236, 1532 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    P. Schuster, K. Sigmund: J. theor. Biol. 100, 533 (1983)MathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Shahshahani: Memoirs Am. Math. Soc. 211 (1979)Google Scholar
  25. 25.
    K. Sigmund: In Lotka-Volterra-Approach to Cooperation and Competition in Dynamic Systems, ed. by W. Ebeling, M. Peschel (Akademie Verlag, Berlin 1985) p. 63Google Scholar
  26. 26.
    K. Sigmund: In Dynamical Systems and Environmental Models, ed. by F. Avert (Akademie Verlag, Berlin 1987)Google Scholar
  27. 27.
    P. Schuster, K. Sigmund: Ber. Bunsenges. Phys. Chem. 89, 668 (1985)Google Scholar
  28. 28.
    C.J. Thompson, J.L. McBride: Math. Biosc. 21, 127 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    B.L. Jones, R.H. Enns, S.S. Rangnekar: Bull. Math. Biol. 38, 12 (1976)Google Scholar
  30. 30.
    D. Rumschitzky: J. Math. Biol. 24, 667 (1987)MathSciNetCrossRefGoogle Scholar
  31. 31.
    P. Schuster: Physica 22D, 100 (1986)MathSciNetGoogle Scholar
  32. 32.
    P. Schuster, J. Swetina: Stationary Mutant Distributions and Evolutionary Optimization, preprint (1987)Google Scholar
  33. 33.
    W.J. Ewens: Mathematical Population Genetics, Biomathematics, Vol. 9 (Springer Verlag, Berlin 1979)zbMATHGoogle Scholar
  34. 34.
    P. Schuster: Physica Scripta 35, 402 (1987)MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    W. Fontana, P. Schuster: Biophys. Chem. 26, 123 (1987)CrossRefGoogle Scholar
  36. 36.
    M. Zuker, P. Stiegler: Nucleic Acids Res. 9, 133 (1981)CrossRefGoogle Scholar
  37. 37.
    M. Zuker, D. Sankoff: Bull. Math. Biol. 46, 591 (1984)zbMATHGoogle Scholar
  38. 38.
    J. Swetina, P. Schuster: Biophys. Chem. 16, 329 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • P. Schuster
    • 1
  1. 1.Institut für theoretische Chemie und StrahlenchemieUniversität WienWienAustria

Personalised recommendations