The Path to Hydrodynamic Instability During Reactions at Liquid Interfaces: Comparison of Experimental Image Analysis Results and Simulations

  • M. L. Kagan
  • R. Kosloff
  • D. Avnir
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 39)


The photoreduction of Fe+3 to Fe+2 which leads to patterns of photoproducts and to convections, was analysed by computerized image analysis of the concentration gradients along the vertical gravity axis, (perpendicular to the horizontal, covered, layer product). The observed time-evolution of the concentration profiles was analysed by modeling it with the actual photochemical reaction kinetics coupled to the diffusion of the components. Good agreement between experiments and simulations was obtained (see e.g., Fig. 4). The time evolution of the Rayleigh number of the reacting system was obtained by numerical solution of the appropriate one-dimensional reaction/diffusion equations, employing a recently developed Fast Fourier Transform algorithm. The calculated time for reaching the Rayleigh critical value of about 660 (two free boundaries) was in close agreement with the experimental value for the time of onset of convections (around 310 sec for both), and in agreement with the experimental system of a rigid cover (top) and a free liquid interface (bottom). It was also found that such a chemical reaction accelerates the evolution time of the hydrodynamic instability, compared to a double-diffusion system without a reaction.


Free Boundary Rayleigh Number Prussian Blue Rigid Boundary Hydrodynamic Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kagan, A. Levi and D. Avnir: Naturwiss. 69, 548 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    D. Avnir, M. Kagan and A. Levi: ibid. 70, 141 (1983)ADSGoogle Scholar
  3. 3.
    D. Avnir and M. Kagan: ibid. 70, 361 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    D. Avnir and M. Kagan: Nature 307, 717 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    D. Avnir, M.L. Kagan and W. Ross: Cham. Phys. Lett. 135, 177 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    To appear in: The Proceedings of Spatial Inhomogeneities and Transient Behaviour in Chemical Kinetics, eds. G. Nicolis and P. Gray, Brusselles, 1987Google Scholar
  7. 7.
    D. Kosloff and R. Kosloff: Comput. Phys. 52, 35 (1983)ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    K.V. Krishnamurty and G.M. Harris: Chem. Rev. 61, 213 (1961)CrossRefGoogle Scholar
  9. 9.
    A.H.I. Ben-Bassat: Israeli. Chem. 6, 91 (1968)Google Scholar
  10. 10.
    G.G. Rav, G. Aravamudan and N.C. Venkatamma: Z. Anal. Chem. 146, 161 (1955)CrossRefGoogle Scholar
  11. 11.
    A. Ito, M. Suenaga and K. Ono: J. Chem. Phys. 48, 3597 (1968)ADSCrossRefGoogle Scholar
  12. 12.
    M.L. Kagan: PhD Thesis, The Hebrew University of Jerusalem, 1987Google Scholar
  13. 13.
    L.G. Longsworth: Ann. N.Y. Acad. Sci. 46, 211 (1945)ADSCrossRefGoogle Scholar
  14. 14.
    L-O. Sundelof: Anal. Biochem. 127, 282 (1982)CrossRefGoogle Scholar
  15. 15.
    M. Kagan, E. Meisels, S. Peleg and D. Avnir: Lecture Notes in Biomathematics 55, 146 (1984),Google Scholar
  16. 15a.
    M.L. Kagan, S. Peleg, A. Tchiprout and D. Avnir: in Non-Equilibrium Dynamics in Chemical Systems, eds. C. Vidal and A. Pacault, (Springer, Berlin, Heidelberg 1984) p.223CrossRefGoogle Scholar
  17. 16.
    M.L. Kagan, S. Peleg and D. Avnir: in preparation. Google Scholar
  18. 17.
    R.H. Bisseling: Ph.D. Thesis, The Hebrew University of Jerusalem, 1987Google Scholar
  19. 18.
    R.B. Gerber, R. Kosloff and M. Berman: Computer Physics Reports 5, 59 (1986)ADSCrossRefGoogle Scholar
  20. 19.
    N. Agmon and R. Kosloff: in press Google Scholar
  21. 20.
    D. Avnir, M.L. Kagan, R. Kosloff and S. Peleg: in Non-Equilibrium Dynamics in Chemical Systems, eds. C. Vidal and A. Pacault, (Springer, Berlin, Heidelberg 1984) p.118CrossRefGoogle Scholar
  22. 21.
    P.M. Gresho and R.L. Sani: Int. J. Heat Mass Transfer 14, 207 (1977)CrossRefGoogle Scholar
  23. 22.
    E.M. Sparrow, R.J. Goldstein and V.K. Jonsson: J. Fluid Mech. 18, 513 (1964)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 23.
    S. Chandrasekhar: Hydrodynamics and Hydromagnetic Stability, Dover Edition, N.Y. 1981Google Scholar
  25. 24.
    J.S. Turner: Ann. Rev. Fluid Mech. 17, 11 (1985)ADSCrossRefGoogle Scholar
  26. 25.
    H.E. Huppert and J.S. Turner: J. Fluid Mech. 106, 299 (1981)ADSzbMATHCrossRefGoogle Scholar
  27. 26.
    M.L. Kagan, R. Kosloff and D. Avnir: in preparation Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. L. Kagan
    • 1
    • 2
  • R. Kosloff
    • 1
    • 2
  • D. Avnir
    • 1
    • 2
  1. 1.Department of Organic ChemistryThe Hebrew University of JersualemJerusalemIsrael
  2. 2.F. Haber Research Center for Molecular DynamicsThe Hebrew University of JersualemJerusalemIsrael

Personalised recommendations