Skip to main content

Interaction of Class I Drugs with the Cardiac Sodium Channel

  • Chapter
Antiarrhythmic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 89))

Abstract

In the preceding chapters it was shown that, based upon electrophysiological principles, arrhythmias can be classified according to mechanisms, and antiarrhythmic agents also can be grouped into several classes and subclasses (see Chaps. 4, 2). In the present chapter, I will describe the electrophysiological basis for subclassification of sodium channel blocking (class I) antiarrhythmic agents and review current models for their mechanism of action. Interactions of multiple agents with a common receptor and clinical implications will be emphasized. Although the chapter will be limited to the sodium channel receptor, it should be noted that these principles can be applied equally well to other classes of antiarrhythmic agents (Hondeghem and Katzung 1984; Roden et al. 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306: 436–441

    Article  PubMed  CAS  Google Scholar 

  • Anderson JL (1985) Rationale of combination antiarrhythmic drug therapy. Cardiovasc Clin 16 (l): 307–327

    PubMed  Google Scholar 

  • Bassett AL, Bigger JT, Hoffman BF (1970) Protective action of diphenylhydantoin on canine Purkinje fibers during hypoxia. J Pharmacol Exp Ther 173: 336–343

    PubMed  CAS  Google Scholar 

  • Bean BP, Cohen CJ, Tsien RW (1983) Lidocaine block of cardiac sodium channels. J Gen Physiol 81: 613–642

    Article  PubMed  CAS  Google Scholar 

  • Bennett PB, Stroobandt R, Kesteloot H, Hondeghem LM (1987a) Sodium channel block by a potent, new antiarrhythmic agent, transcainide, in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 9: 661–667

    Article  Google Scholar 

  • Bennett PB, Woosley RL, Hondeghem LM (1987b) Competition between lidocaine and one of its metabolites, glycylxylidide, for cardiac sodium channels. Circulation in press

    Google Scholar 

  • Bigger JT, Mandel WJ (1970) Effect of lidocaine on conduction in canine Purkinje fibers and at the ventricular muscle-Purkinje fiber junction. J Pharmacol Exp Ther 172: 239–254

    PubMed  CAS  Google Scholar 

  • Breithardt G, Seipel L, Abendroth RR (1981) Comparison of antiarrhythmic efficacy of disopyramide and mexiletine against stimulus-induced ventricular tachycardia. J Cardiovasc Pharmacol 3: 1026–1037

    Article  PubMed  CAS  Google Scholar 

  • Broughton A, Grant AO, Starmer CF, Klinger JK, Stambler BS, Strauss HC (1984) Lipid solubility modulates pH potentiation of local anesthetic block of Kmax reactivation in guinea pig myocardium. Circ Res 55: 513–523

    Google Scholar 

  • Cahalan MD (1978) Local anesthetic block of sodium channels in normal and pronase-treated squid giant axons. Biophys J 23: 285–311

    Article  PubMed  Google Scholar 

  • Chen C, Gettes LS, Katzung BG (1975) Effects of lidocaine and quinidine on steady- state characteristics and recovery kinetics of (dK/dOmax in guinea pig ventricular myocardium. Circ Res 37: 20–29

    Google Scholar 

  • Clarkson CW, Matsubara T, Hondeghem LM (1984) Slow inactivation of Fmax in guinea pig ventricular myocardium. Am J Physiol 27: 645–654

    Google Scholar 

  • Clarkson CW, Hondeghem LM (1985 a) Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiology 62: 396–405

    Google Scholar 

  • Clarkson CW, Hondeghem LM (1985b) Evidence for a specific receptor site for lidocaine, quinidine, and bupivacaine associated with cardiac sodium channels in guinea pig ventricular myocardium. Circ Res 56: 496–506

    Google Scholar 

  • Clarkson CW, Follmer CH, Yeh JZ, Ten Eick RE, Hondeghem LM (1985) Evidence for two components of sodium channel block by lidocaine in single isolated cardiac myocytes. Circulation 72 (Suppl III): 38

    Article  Google Scholar 

  • Courtney KR (1975) Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA 968. J Pharmacol Exp Ther 195: 225–236

    PubMed  Google Scholar 

  • Courtney KR (1983) Quantifying antiarrhythmic drug blocking during action potentials in guinea-pig papillary muscle. J Mol Cell Cardiol 15: 749–757

    Article  PubMed  Google Scholar 

  • Duff HJ, Roden D, Primm RK, Oates JA, Woosley RL (1983) Mexiletine in the treatment of resistant ventricular arrhythmias: enhancement of efficacy and reduction of dose-related side effects by combination with quinidine. Circulation 67: 1124–1128

    Article  Google Scholar 

  • Ehring GR, Moyer JW, Hondeghem LM (1987) Quantitative structure activity studies of antiarrhythmic properties in a series of lidocaine and procainamide derivatives. J Pharmacol Exp Ther (to be published )

    Google Scholar 

  • Elharrar V, Zipes DP (1982) Effects of encainide and metabolites (MJ14030 and MJ9444) on canine cardiac Purkinje and ventricular fibers. J Pharmacol Exp Ther 220: 460–447

    Google Scholar 

  • Gintant GA, Hoffman BF (1984) Use-dependent block of cardiac sodium channels by quaternary derivatives of lidocaine. Pflugers Arch 400: 121–129

    Article  PubMed  CAS  Google Scholar 

  • Grant AO, Strauss LJ, Wallace AG, Strauss HC (1980) The influence of pH on the electrophysiological effects of lidocaine in guinea pig ventricular myocardium. Circ Res 47: 542–550

    Google Scholar 

  • Grant AO, Starmer CF, Strauss HC (1983) Unitary sodium channels in isolated card-iac myocytes of rabbit. Circ Res 53: 823–829

    PubMed  CAS  Google Scholar 

  • Handel F, Luzzi FA, Wenger TL, Barchowsky A, Shand DG, Strauss H (1983) Lido- caine and its metabolites in canine plasma and myocardium. J Cardiovasc Pharmacol 5: 44–50

    Article  Google Scholar 

  • Hill JL, Gettes LS (1980) Effect of acute coronary occlusion on local myocardial extracellular K+ activity in swine. Circulation 61: 768–778

    PubMed  CAS  Google Scholar 

  • Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69: 497–515

    Article  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantiative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117: 500–544

    Google Scholar 

  • Hoffman BF, Bigger JT (1971) Antiarrhythmic drugs. In: DiPalma J (ed) Drills pharmacology in medicine, 4th edn. McGraw-Hill, New York p 824 Hondeghem LM (1987) Antiarrhythmic agents: modulated receptor applications. Circulation 75: 514–520

    Google Scholar 

  • Hondeghem LM, Katzung BG (1977) Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta 472: 373–398

    PubMed  CAS  Google Scholar 

  • Hondeghem LM, Katzung BG (1980) Test of a model antiarrhythmic drug action: ef-fects of quinidine and lidocaine on myocardial conduction. Circulation 61: 1217–1224

    PubMed  CAS  Google Scholar 

  • Hondeghem LM, Katzung BG (1984) Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel blocking drugs. Annu Rev Pharmacol Toxicol 24: 386–423

    Article  Google Scholar 

  • Hondeghem LM, Matsubara T (1984) Quinidine and lidocaine: activation and inactivation block. Proc West Pharmacol Soc 27: 19–21

    Google Scholar 

  • Hondeghem LM, Grant AO, Jensen RA (1974) Antiarrhythmic drug action: selective depression of hypoxic cardiac cells. Am Heart J 87: 602–605

    Article  PubMed  CAS  Google Scholar 

  • Hondeghem LM, Matsubara T (1988) Quinidine blocks cardiac sodium channels during opening and slow inactivation in guinea-pig papillary muscle. Br J Pharmacol 93: 311–318

    Google Scholar 

  • Hope RR, Williams DO, El-Sherif N, Lazzara R, Scherlag BJ (1974) The efficacy of antiarrhythmic agents during acute myocardial ischemia and the role of heart rate. Circulation 50: 507–514

    PubMed  CAS  Google Scholar 

  • Jensen R, Katzung B (1970) Electrophysiological actions of diphenylhydantoin on rabbit atria. Circ Res 26: 17–27

    Google Scholar 

  • Johnson EA, McKinnon MG (1957) The differential effect of quinidine and pyrila- mine on the myocardial action potential at various rates of stimulation. J Pharmacol Exp Ther 120: 460–468

    Google Scholar 

  • Kohlhardt M, Seifert C (1985) Properties of Kmax block of Ina-mediated action poten-tials during combined application of antiarrhythmic drugs in cardiac muscle. Nau- nyn Schmiedeberg’s Arch Pharmacol 330: 235–244

    Article  Google Scholar 

  • Kunze DL, Lacerda AE, Wilson DL, Brown AM (1985) Cardiac Na currents and the inactivating, reopening, and waiting properties of single cardiac Na channels. J Gen Physiol 86: 691–719

    Article  Google Scholar 

  • Mason JW, Hondeghem LM, Katzung BG (1984) Block of inactivated sodium channels and of depolarization-induced automaticity in guinea pig papillary muscle by amiodarone. Circ Res 55: 277–285

    Google Scholar 

  • Matsubara T, Clarkson C, Hondeghem L (1987) Lidocaine blocks open and inactivated cardiac sodium channels. Naunyn Schmiedeberg’s Arch Pharmacol 336: 224–231

    Article  Google Scholar 

  • Moorman JR, Yee R, Bjornsson T, Starmer CF, Grant AO, Strauss HC (1986) pdoes not predict pH potentiation of sodium channel blockade by lidocaine and W6211 in guinea pig ventricular myocardium. J Pharmacol Exp Ther 238: 159–166

    Google Scholar 

  • Moyer JW (1985) The interaction of a series of aprindine derivatives with cardiac sodium channels. Dissertation, University of California, San Francisco

    Google Scholar 

  • Nishimura M, Follmer CH, Cigan AL, Yah JZ (1986) Amiodarone blocks Ca++ current in guinea pig ventricular myocytes. Circulation 74 (Suppl II): 169

    Google Scholar 

  • Nokin P, Clinet M, Swillens S, Delisee C, Meysmans L, Chatelain P (1986) Allosteric modulation of [3H] nitrendipine binding to cardiac and cerebral cortex membranes by amiodarone. J Cardiovasc Pharmacol 8: 1051–1057

    Article  Google Scholar 

  • Polster P, Broekhuysen J (1976) The adrenergic antagonism of amiodarone. Biochem Pharmacol 25: 131–134

    Article  Google Scholar 

  • Roden DM, Bennett PB, Hondeghem LM (1986) Quinidine blocks cardiac potassium channels in a time- and voltage-dependent fashion. Biophys J 49: 352a

    Google Scholar 

  • Sada H, Kojima M, Ban T (1979) Effect of procainamide on transmembrane action potentials in guinea-pig papillary muscles as affected by external potassium concentration. Arch Pharmacol 309: 179–190

    Article  Google Scholar 

  • Saikawa T, Carmeliet E (1982) Slow recovery of the maximal rate of rise ( Fmax) of the action potential in sheep cardiac Purkinje fibers. Pflugers Arch 394: 90–93

    Google Scholar 

  • Sanchez-Chapula J (1985) Electrophysiological interactions between quinidine-lido- caine and quinidine-phenytoin in guinea-pig papillary muscle. Naunyn Schmiede- berg’s Arch Pharmacol 331: 369–375

    Article  Google Scholar 

  • Sanchez-Chapula J, Tsuda Y, Josephson IR (1983) Voltage- and use-dependent effects of lidocaine on sodium current in rat single ventricular cells. Circ Res 52: 557–565

    Google Scholar 

  • Singh BN, Vaughan Williams EM (1970) The effect of amiodarone, a new antianginal drug, on cardiac muscle. Br J Pharmacol 39: 657–667

    Google Scholar 

  • Singh BN, Vaughan Williams EM (1971) Effect of altering potassium concentration on the action of lidocaine and diphenylhydantoin on rabbit atrial and ventricular muscle. Circ Res 24: 286–295

    Google Scholar 

  • Snyders DJ, Hondeghem LM (1987) Drug-associated channels inactivate and reactivate at more negative potentials than drug-free channels. Proc West Pharmacol Soc 30 (in Press): 149–151

    Google Scholar 

  • Starmer CF, Courtney KR (1986) Modelling ion channel blockade at guarded binding sites: application to tertiary drugs. Am J Physiol 251: H848–856

    PubMed  CAS  Google Scholar 

  • Starmer CF, Grant AO, Strauss HC (1983) A model of the interaction of local anesthetics with Na channels. Biophys J 41: 145a

    Google Scholar 

  • Starmer CF, Grant AO, Strauss HC (1984) Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J 46: 15–27

    Article  Google Scholar 

  • Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 62: 37–57

    Article  PubMed  Google Scholar 

  • Vaughan Williams EM (1970) Classification of anti-arrhythmic drugs. In: Sandoe E, Flensted-Jensen E, Olesen KH (eds) Symposium on cardiac Arrhythmias. Astra, Elsinore, Denmark, pp 449–501

    Google Scholar 

  • Weidmann S (1955) Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibers. J Physiol (Lond) 129: 568–582

    Google Scholar 

  • Weld FM, Coromilas J, Rottman JN, Bigger JT (1982) Mechanisms of quinidine-in- duced depression of maximum upstroke velocity in ovine cardiac Purkinje fibers. Circ Res 50: 369–376

    Google Scholar 

  • Yeh JZ, Narahashi T (1977) Kinetic analysis of pancuronium interaction with sodium channels in squid axon membranes. J Gen Physiol 69: 2293–2323

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hondeghem, L.M. (1989). Interaction of Class I Drugs with the Cardiac Sodium Channel. In: Vaughan Williams, E.M. (eds) Antiarrhythmic Drugs. Handbook of Experimental Pharmacology, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73666-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73666-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73668-1

  • Online ISBN: 978-3-642-73666-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics