Skip to main content

Subclassification of Class I Antiarrhythmic Drugs

  • Chapter
Book cover Antiarrhythmic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 89))

Abstract

Class I comprises a very large number of compounds with widely disparate chemical structures and clinical electrophysiological properties (see Chaps. 2, 9–11). They are grouped together because they share the ability to block the fast inward sodium current in cardiac muscle. It is not surprising, therefore, that there have been a number of attempts to subclassify these agents into smaller, more homogeneous groups. Indeed, as was discussed in Chap. 2, there was at one time considerable disagreement regarding the inclusion of lidocaine and diphenylhydantoin as class I drugs at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306: 436–441

    Article  PubMed  CAS  Google Scholar 

  • Anderson JL, Mason JW, Winkle RA, Meffin PJ, Fowles RE, Peters F, Harrison DC (1978) Clinical electrophysiological effects of tocainide. Circulation 57: 685–691

    Google Scholar 

  • Amstrong CM (1981) Sodium channels and gating currents. Physiol Rev 61:644-683 Arnsdorf MF, Bigger JT (1972) Effect of lidocaine hydrochloride on membrane conductance in mammalian cardiac Purkinje fibres. J Clin Invest 51: 2252–2263

    Google Scholar 

  • Attwell D, Cohen I, Eisner D, Ohba M, Ojeda C (1979) The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflugers Arch 379: 137–142

    Article  Google Scholar 

  • Bär FW, Farre J, Ross D, Vanagt EJ, Gorgels AP, Wellens HJJ (1981) Electrophysiological effects of lorcainide, a new antiarrhythmic drug. Br Heart J 45: 292–298

    Article  PubMed  Google Scholar 

  • Bean BP, Cohen CJ, Tsien RW (1983) Lidocaine block of cardiac sodium channels. J Gen Physiol 81: 613–642

    Article  Google Scholar 

  • Bigger JT, Mandel WJ (1970) Effect of lidocaine on conduction in canine Purkinje fibers and at the ventricular muscle-Purkinje fiber junction. J Pharmacol Exp Ther 172: 239–254

    Google Scholar 

  • Birkhead JS, Vaughan Williams EM (1977) Dual effect of disopyramide on atrial and atrioventricular conduction and refractory periods. Br Heart J 39: 657–660

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Giles W, Hume JR, Lee KS (1980) Voltage clamp analysis of lidocaine and quinidine induced depression of the sodium current in isolated rat ventricular cells. J Physiol (Lond) 307: 62–63

    Google Scholar 

  • Brown AM, Lee KS, Powell T (1981) Sodium current in single rat heart muscle cells. J Physiol (Lond) 318: 479–500

    Google Scholar 

  • Brown HF (1982) Electrophysiology of the sinoatrial node. Physiol Rev 62: 505–530

    PubMed  Google Scholar 

  • Cahalan M, Shapiro BI, Almers W (1980) Relationship between inactivation of sodium channels and block by quaternary derivatives of local anesthetics and other compounds. In: Fink BR (ed) Molecular mechanisms of anesthesia. Raven, New York, pp 17–33 (Progress in anesthesiology, vol 2 )

    Google Scholar 

  • Campbell TJ (1982 a) Voltage- and time-dependent depression of maximum rate of de- polarisation of guinea-pig ventricular action potentials by two steroidal antiarrhythmic drugs, CCI22277 and Org6001. Br J Pharmacol 77: 541–548

    Google Scholar 

  • Campbell TJ (1982b) Studies on the mode of action of cardioactive drugs in animals and man. D. Phil thesis, Oxford University

    Google Scholar 

  • Campbell TJ (1983a) Kinetics of onset of rate-dependent effects of Class I antiarrhythmic drugs are important in determining their effects on refractoriness in guinea-pig ventricle, and provide a theoretical basis for their subclassification. Cardiovasc Res 17: 344–352

    Article  PubMed  CAS  Google Scholar 

  • Campbell TJ (1983 b) Resting and rate-dependent depression of maximum rate of de -polarisation (Fmax) in guinea-pig ventricular action potentials by mexiletine, diso-pyramide and encainide. J Cardiovasc Pharmacol 5:291–296

    Google Scholar 

  • Campbell TJ (1983 c) Importance of physico-chemical properties in determining the kinetics of the effects of Class I antiarrhythmic drugs on maximum rate of depolarization in guinea-pig ventricle. Br J Pharmacol 80:33–40

    Google Scholar 

  • Campbell TJ (1987) Differing electrophysiological effects of Class IA, IB and IC an-tiarrhythmic drugs on guinea-pig sinoatrial node Br J Pharmacol 91: 395–401

    CAS  Google Scholar 

  • Campbell TJ, Vaughan Williams EM (1983) Voltage and time-dependent depression of maximum rate of depolarisation of guinea-pig ventricular action potentials by two new antiarrhythmic drugs, flecainide and lorcainide. Cardiovasc Res 17: 251–258

    Article  Google Scholar 

  • Carmeliet E (1980) Electrophysiological effects of encainide on isolated cardiac mus-cle and Purkinje fibers on the Langendorff-perfused guinea-pig heart. Eur J Pharmacol 61: 247–262

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet E, Saikawa T (1982) Shortening of the action potential and reduction of pacemaker activity by lidocaine, quinidine, and procainamide in sheep cardiac Purkinje fibers: an effect on Na or K currents. Circ Res 50: 257–272

    PubMed  CAS  Google Scholar 

  • Cohen CJ, Bean BP, Tsien RW (1984) Maximal upstroke velocity as an index of available sodium conductance. Circ Res 54: 636–651

    Google Scholar 

  • Coraboeuf E, Deroubaix E, Coulombe A (1979) Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. Am J Physiol 236: H561–H567

    Google Scholar 

  • Courtney KR (1975) Mechanism of frequency-dependent inhibition of Na currents in frog myelinated nerve by the lidocaine derivative GEA 968. J Pharmacol Exp Ther 195: 255–36

    Google Scholar 

  • Courtney KR (1979) Fast frequency-dependent block of action potential upstroke in rabbit atrium by small local anesthetics. Life Sci 24: 1581–1588

    Article  PubMed  CAS  Google Scholar 

  • Courtney KR (1980 a) Structure-activity relations for frequency-dependent sodium channel block in nerve by local anesthetics. J Pharmacol Exp Ther 213:114–119

    Google Scholar 

  • Courtney KR (1980 b) Interval-dependent effects of small antiarrhythmics drugs on excitability of guinea-pig myocardium. J Mol Cell Cardiol 12:1273–86

    Google Scholar 

  • Courtney KR (1980 c) Antiarrhythmic drug design: frequency-dependent block in myocardium. In: Fink BR (ed) Molecular mechanisms of anesthesia. Raven, New York, pp 111–118 (Progress in anesthesiology, vol 2)

    Google Scholar 

  • Courtney KR (1983) Quantifying antiarrhythmic drug blocking during action potentials in guinea-pig papillary muscle. J Mol Cell Cardiol 15: 749–747

    Article  PubMed  Google Scholar 

  • Courtney KR (1984) Size-dependent kinetics associated with drug block of sodium current. Biophys J 45: 42–44

    Article  PubMed  Google Scholar 

  • Courtney KR (1985) Letter. Circ Res 57: 194–195

    Google Scholar 

  • Cowan JC, Vaughan Williams EM (1981) Characterization of a new oral antiarrhythmic durg, flecainide (R818). Eur J Pharmacol 73: 333–342

    Article  CAS  Google Scholar 

  • Dhingra RC, Rosen KM (1979) Procainamide and the sinus node. Chest 76: 620–662

    Article  Google Scholar 

  • DiBianco R, Fletcher RD, Cohen AI, Gottdiener JS, Singh SN, Katz RJ, Bates HR, Sauerbrunn B (1982) Treatment of frequent ventricular arrhythmia with encainide: assessment using serial ambulatory electrocardiograms, intracardiac electrophysiologic studies, treadmill exercise tests, and radionucelide cineangiographic studies. Circulation 65: 1134–1147

    Article  Google Scholar 

  • Driot P, Gamier D (1972) Analyse en courant et voltage imposé des propriétés antiar- rhythmiques de la Quinidine appliquée au myocarde de la Grenouille. C R Acad Sci Paris (D) 274: 3421–3424

    Google Scholar 

  • Ducouret P (1976) The effect of quinidine on membrane electrical activity in frog auricular fibres studied by current and voltage clamp. Br J Pharmacol 57: 163–84

    PubMed  Google Scholar 

  • Ducouret P, Gargouil YM, Poindessault JP (1981) Heart fast initial current reactivation and antidysrhythmic agents. J Physiol (Lond) 320: 29–30

    Google Scholar 

  • Ehring GR, Hondeghem LM (1981) Antiarrhythmic structure activity relationships in a series of lidocaine and procainamide derivatives. Proc West Pharmacol Soc 24: 221 - 224

    Google Scholar 

  • Estes NAM, Garan H, McGovern B, Ruskin JN (1985) Class I antiarrhythmic agents: classification, electrophysiologic considerations, and clinical effects. In: Reiser HJ, Horowitz LN (eds), Mechanisms and treatment of cardiac arrhythmias; relevance of basic studies to clinical management. Urban and Schwarzenberg, Baltimore, pp 183–199

    Google Scholar 

  • Fozzard HA, January CT, Makielski JC (1985) New studies of the excitatory sodium currents in heart muscle. Circ Res 56: 475–485

    PubMed  CAS  Google Scholar 

  • Frazier DT, Narahashi T, Yamada M (1970) The site of action and active form of local anesthetics II: experiments with quaternary compounds. J Pharmacol Exp Ther 171: 45–51

    Google Scholar 

  • Gettes LS, Reuter H (1974) Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J Physiol (Lond) 240: 703–724

    CAS  Google Scholar 

  • Gintant GA, Nay lor RE, Hoffman BF (1980) Interaction of local anesthetic antiarrhythmic agents with sodium channels (abstr). Circulation 62 (Suppl II): III–137

    Google Scholar 

  • Gliklich JI, Hoffman BF (1978) Sites of action and active forms of lidocaine and some derivatives on cardiac Purkinje fibers. Circ Res 43: 638–51

    Google Scholar 

  • Grant AO, Trantham JL, Brown KK, Strauss HC (1982) pH-dependent effects of quini- dine on the kinetics of dV/dtmax in guinea-pig ventricular myocardium. Circ Res 50: 210–217

    Google Scholar 

  • Grant AO, Starmer CF, Strauss HC (1984) Antiarrhythmic drug action: blockade of the inward sodium current. Circ Res 55: 428–439

    Google Scholar 

  • Harrison DC (1985) Is there a rational basis for the modified classification of antiarrhythmic drugs? In: Morganroth J, Moore EN (eds), Cardiac arrhythmias: new therapeutic drugs and devices. Nijhoff, Boston, pp 36–48

    Chapter  Google Scholar 

  • Harrison DC, Winkle R, Sami M, Mason J (1980) Encainide: a new and potent antiar-rhythmic agent. Am Heart J 100: 1046–1054

    Article  Google Scholar 

  • Harrison DC, Winkle RA, Sami M, Mason JW (1981) Encainide: a new and potent antiarrhythmic agent. In: Harrison DC (ed) Cardiac arrhythmias: a decade of progress. Hall Medical, Boston, pp 315–330

    Google Scholar 

  • Heistracher P (1971) Mechanism of action of antifibrillatory drugs. Naunyn- Schmiedebergs Arch Pharmacol 269: 199–212

    Article  PubMed  Google Scholar 

  • Hellestrand KJ, Bexton RS, Nathan AW, Camm AJ (1982) Acute electrophysiological effects of flecainide acetate on cardiac conduction and refractoriness in man. Br Heart J 48: 140–148

    Article  Google Scholar 

  • Hille B (1971) The permeability of the sodium channel to organic cations in myelinated nerve. J Gen Physiol 58: 599–619

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1977 a) The pH-dependent rate of action of local anesthetics on the node of Ranvier. J Gen Physiol 69:475–496

    Google Scholar 

  • Hille B (1977 b) Local anesthetics: hydrophilic and hydrophobic pathways for the drug receptor reaction. J Gen Physiol 69:497–515

    Google Scholar 

  • Hille B (1978) Local anesthetic action on inactivation of the sodium channel in nerve and skeletal muscle: possible mechanisms for antiarrhythmic agents. In: Morad M (ed) biophysical aspects of cardiac muscle. Academic, New York, pp 55–74

    Google Scholar 

  • Hondeghem LM (1985) Letter. Circ Res 57: 192–193

    Google Scholar 

  • Hondeghem LM, Katzung BG (1977 a) Time and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta 472: 373–398

    Google Scholar 

  • Hondeghem LM, Katzung BG (1977b) A unifying molecular model for the interaction of antiarrhythmic drugs with cardiac sodium channels: application to quinidine and lidocaine. Proc West Pharmacol Soc 20: 253–256

    CAS  Google Scholar 

  • Hondeghem LM, Katzung BG (1980) Test of a model of antiarrhythmic drug action. Circulation 61: 1217–1224

    Google Scholar 

  • Hondeghem LM, Katzung BG (1984) Antiarrhythmic agents: the modulated receptor mechanisms of actions of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol 24: 387–423

    Article  PubMed  CAS  Google Scholar 

  • Hondeghem LM, Grant AO, Jensen RA (1974) Antiarrhythmic drug action: selective depression of hypoxic cardiac cells. Am Heart J 87: 602–605

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117: 500 - 544

    Google Scholar 

  • Jackman WM, Zipes DP, Rinkenberger RL, Heger JJ, Prystowsky EN (1982) Electro- physiology of oral encainide. Am J Cardiol 49: 1270–1278

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, McKinnon MG (1957) The differential effect of quinidine and pyrila- mine on the myocardial action potential at various rates of stimulation. J Pharmacol Exp Ther 120: 460–468

    Google Scholar 

  • Johnson EA, Robertson PA (1958) The stimulatory action of acetylcholine on isolated rabbit atria. Br J Pharmacol 13: 304–7

    Google Scholar 

  • Josephson ME, Seides SF (1979) Clinical cardiac electrophysiology: techniques and interpretations. Lea and Febiger, Philadelphia, p 46

    Google Scholar 

  • Josephson ME, Caracta AR, Lau SH, Gallager JJ, Damato AN (1972) Effects of lido–caine on refractory periods in man. Am Heart J 84: 778–786

    Article  Google Scholar 

  • Kim HG, Friedman HS (1979) Procainamide-induced sinus node dysfunction in patients with chronic renal failure. Chest 76: 699–700

    Article  Google Scholar 

  • Krikler DM, Curry PVL (1976) Torsade de pointes, an atypical ventricular tachycardia. Br Heart J 38: 117–120

    Article  Google Scholar 

  • Lippestad CT, Forfang K (1971) Production of sinus arrest by lignocaine. Br Med J 1: 537

    Article  Google Scholar 

  • Luckstead EF, Tarr M (1972) Comparson of quinidine and bretylium tosylate effects on cardiac ionic currents (abstr). Fed Proc 31: 818

    Google Scholar 

  • Lui HK, Lee G, Dietrich P, Low RI, Mason DT (1982) Flecainide-induced QT prolongation and ventricular tachycardia. Am Heart J 103: 567–569

    Article  Google Scholar 

  • Man RYK, Dresel PE (1979) A specific effect of lidocaine and tocainide on ventricular conduction of mid-range extrasystoles. J Cardiovasc Pharmacol 1: 329–342

    Article  Google Scholar 

  • Mandel WJ, Bigger JT (1971) Electrophysiologic effects of lidocaine on isolated canine and rabbit atrial tissue. J Pharmacol Exp Ther 178: 81–93

    Google Scholar 

  • Matsubara T, Hondeghem L (1983) Mechanism for preferential effectiveness of lidocaine against ventricular arrhythmias (abstr). Circulation 68 (Suppl III): 295

    Google Scholar 

  • Matsuki N, Quandt F, Yeh J, Ten Eick R (1981) Rate-dependent block of sodium channels by Phenytoin and quinidine. Circulation 64 (Suppl IV): 126

    Article  Google Scholar 

  • McComish M, Robinson C, Kitson D, Jewitt DE (1977) Clinical electrophysiological effects of mexiletine. Postgrad Med J 53 (Suppl 1): 85–91

    Google Scholar 

  • Minardo JD, Heger JJ, Zipes DP, Miles WM, Prystowsky EN (1986) Drug associated ventricular fibrillation: analysis of clinical features and QTC prolongation (abstr). I Am Coll Cardiol 7: 158a

    Google Scholar 

  • Mirro MJ, Watanabe AM, Bailey JC (1980 a) Electrophysiological effects of disopyra- mide and quinidine on guinea pig atria and canine cardiac Purkinje fibers. Circ Res 46: 660–668

    Google Scholar 

  • Mirro MJ, Manalan AS, Bailey JC, Watanabe AM (1980b) Anticholinergic effects of disopyramide and quinidine on guinea pig myocardium. Circ Res 47: 855–865

    PubMed  CAS  Google Scholar 

  • Mirro MJ, Watanabe AM, Bailey JC (1981) Electrophysiological effects of the optical isomers of disopyramide and quinidine in the dog. Circ Res 48: 867–874

    Google Scholar 

  • Narahashi T, Frazier DT (1975) Site of action and active form of procaine in squid giant axons. J Pharmacol Exp Ther 194: 506–513

    Google Scholar 

  • Narahashi T, Frazier DT, Yamada M (1970) The site of action and active form of local anesthetics I. J Pharmacol Exp Ther 171: 32–44

    PubMed  CAS  Google Scholar 

  • Nawrath H (1981) Action potential, membrane currents and force of contraction in mammalian heart muscle fibers treated with quinidine. J Pharmacol Exp Ther 216: 176–181

    PubMed  Google Scholar 

  • Nawrath H, Eckel L (1979) Electrophysiological study of human ventricular heart muscle treated with quinidine: interaction with isoprenaline. J Cardiovasc Pharmacol 1: 415–425

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M, Yamada S, Watanabe Y (1982) Electrophysiologic effects of disopyra- mide phosphate on the spontaneous action potential and membrane current systems of the rabbit atrioventricular node. Am J Cardiol (Abstr) 49: 921

    Google Scholar 

  • Noble D, Noble SJ (1984), A model of sino-atrial node electrical activity based on a modification of the DiFrancesco-Noble (1984) equations. Proc Roy Soc Lond [Biol] 222: 295–304

    Article  Google Scholar 

  • Oshita S, Sada H, Kojima M, Ban T (1980) Effects of tocainide and lidocaine on the transmembrane action potentials as related to external potassium and calcium concentrations in guinea-pig papillary muscles, Naunyn Schmiedebergs Arch Pharmacol 314: 67–82

    Article  PubMed  CAS  Google Scholar 

  • Podrid PJ (1985) Aggravation of ventricular arrhythmia: a drug-induced complication. Drugs 29 (Suppl 4): 33–44

    Article  PubMed  Google Scholar 

  • Roos JC, Paalman ACA, Dunning AJ (1976) Electrophysiological effects of mexiletine in man. Br Heart J 38: 1262–1271

    Article  Google Scholar 

  • Sada H, Ban T (1980) Effects of acebutolol and other structurally related beta adrenergic blockers on transmembrane action potential in guinea-pig papillary muscles. J Pharmacol Exp Ther 215: 507–514

    Google Scholar 

  • Sada H, Ban T (1981) Effects of various structurally related beta-adrenoceptor blocking agents on maximum upstroke velocity of action potential in guinea-pig papillary muscles. Naunyn Schmiedebergs Arch Pharmacol 317: 245–251

    Article  Google Scholar 

  • Sada H, Kojima M, Ban T (1979) Effects of procainamide on transmembrane action potentials in guinea-pig papillary muscles as affected by external potassium concentration. Naunyn Schmiedebergs Arch Pharmacol 309: 179–190

    Article  Google Scholar 

  • Sami M, Mason JW, Peters F, Harrison DC (1979) Clinical electrophysiological effects of encainide, a newly developed antiarrhythmic agent. Am J Cardiol 44: 526–532

    Article  Google Scholar 

  • Singh BN, Hauswirth D (1974) Comparative mechanisms of action of antiarrhythmic drugs. Am Heart J 87: 367–382

    Article  Google Scholar 

  • Singh SN, DiBianco R, Kostroff LI, Fletcher RD (1984) Lorcainide for high-frequency ventricular arrhythmia: preliminary results of a short-term double-blind and placebo-controlled crossover study and long-term follow-up. Am J Cardiol 54:22 B–28B

    Google Scholar 

  • Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quartenary derivatives of lidocaine. J Gen Physiol 62: 37–57

    Article  PubMed  CAS  Google Scholar 

  • Szekeres L, Vaughan Williams EM (1962) Antifibrillatory action. J Physiol (Lond) 160: 470–482

    Google Scholar 

  • Tritthart H, Fleckenstein B, Fleckenstein A (1971) Some fundamental actions of an-tiarrhythmic drugs on the excitability and contractility of single myocardial fibres. Naunyn Schniedebergs Arch Pharmacol 269: 212–219

    Article  CAS  Google Scholar 

  • Varro A, Elharrar V, Surawicz B (1985) Frequency-dependent effects of several Class I antiarrhythmic drugs on Fmax of action potential upstroke in canine cardiac Pur- kinje fibers. J Cardiovasc Pharmacol 7: 482–492

    Article  Google Scholar 

  • Vaughan Williams EM (1958) The mode of action of quinidine on isolated rabbit atria interpreted from intracellular potential records. Br J Pharmacol 13: 267–287

    Google Scholar 

  • Vaughan Williams EM (1978) Some factors that influence the activity of antiarrhythmic drugs. Br Heart J 40 (Suppl): 52–61

    Google Scholar 

  • Wald RW, Waxman MB, Downar E (1980) The effect of antiarrhythmic drugs on depressed conduction and unidirectional block in sheep Purkinje fibers. Circ Res 46: 612–619

    Google Scholar 

  • Weidmann S (1955) Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J Physiol (Lond) 129: 568–582

    CAS  Google Scholar 

  • Weld FM, Bigger JT (1975) Effect of lidocaine on the early inward transient current in sheep cardiac Purkinje fibers. Circ Res 27: 630–639

    Google Scholar 

  • West TC, Amory DW (1960) Single fiber recording of the effects of quinidine at atrial and pacemaker sites in the isolated right atrium of the rabbit. J Pharmacol Exp Ther 130: 183–193

    Google Scholar 

  • Winkle RA, Mason JW, Griffin JC, Ross D (1981) Malignant ventricular tachyarrhythmias associated with the use of encainide. Am Heart J 102: 857–1864

    Article  PubMed  CAS  Google Scholar 

  • Wittig J, Harrison LA, Wallace AG (1973) Electrophysiological effects of lidocaine on distal Purkinje fibers of canine heart. Am Heart J 86: 69–78

    Article  Google Scholar 

  • Yeh JZ, Narahashi T (1976) Mechanism of action of quinidine on squid axon membranes. J Pharmacol Exp Ther 196: 62–70

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Campbell, T.J. (1989). Subclassification of Class I Antiarrhythmic Drugs. In: Vaughan Williams, E.M. (eds) Antiarrhythmic Drugs. Handbook of Experimental Pharmacology, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73666-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73666-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73668-1

  • Online ISBN: 978-3-642-73666-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics