Skip to main content

Autonomic Mechanisms in Cardiac Rhythm and Arrhythmias

  • Chapter
Antiarrhythmic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 89))

Abstract

Our purpose in this chapter is to review the cellular electrophysiologic effects of autonomic stimulation, and to demonstrate its complexity in two ways: by describing the changes in cardiac autonomic interactions that occur with growth and development, and by describing how autonomic mediators modulate cardiac arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allessie MA, Bonke FIM, Schopman FJG (1977) Circus movement in the rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 41: 9–18

    PubMed  CAS  Google Scholar 

  • Amerini S, Piazzesi G, Mugelli A (1984) Alpha-adrenoceptor stimulation enhances automaticity in barium-treated cardiac Purkinje fibers. Arch Int Pharmacodyn Ther 270: 97–105

    PubMed  CAS  Google Scholar 

  • Bailey JC, Greenspan K, Elizari MV, Anderson GJ, Fisch C (1972) Effects of acetyl-choline on automaticity and conduction in the proximal portion of the His-Purkinje specialized conduction system of the dog. Circ Res 30: 210–216

    PubMed  CAS  Google Scholar 

  • Bailey JC, Watanabe AM, Besch HR, Lathrop DA (1979) Acetylcholine antagonism of the electrophysiological effects of isoproterenol on canine cardiac Purkinje fibers. Circ Res 44: 378–383

    PubMed  CAS  Google Scholar 

  • Brachman J, Scherlag B, Rosenshtraukh LV, Lazzara R (1983) Bradycardia-dependent triggered activity: relevance to drug-induced multiform ventricular tachycardia. Circulation 68: 846–856

    Google Scholar 

  • Brooks CMC, Hoffman BF, Suckling EE, Orias O (1955) Excitability of the heart. Grune & Stratton, New York

    Google Scholar 

  • Brown H, DiFrancesco D (1980) Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sinoatrial node. J Physiol (Lond) 308: 331–351

    CAS  Google Scholar 

  • Carlsson E, Dahlof CG, Hedberg A, Persson H, Tangstrand B (1977) Differentiation of cardiac chronotropic and inotropic effects of beta-adrenoceptors agonists. Naunyn Schmiedebergs Arch Pharmacol 300: 101–105

    PubMed  CAS  Google Scholar 

  • Ciaraldi T, Marinetti GV (1977) Thyroxine and propylthiouracil effects in vivo on alpha and beta adrenergic receptors in rat heart. Biochem Biophys Res Commun 74: 984–991

    PubMed  CAS  Google Scholar 

  • Corr PB, Shayman JA, Kramer JB, Kipnis RJ (1981) Increased alpha-adrenergic receptors in ischemic cat myocardium: a potential mediator of electrophysiological derangements. J Clin Invest 67: 1232–1236

    PubMed  CAS  Google Scholar 

  • Cranefield PF (1975) The conduction of the cardiac impulse. Futura, Mt. Kisco, pp 135–137, 199–231, 243–263

    Google Scholar 

  • Damiano BP, Rosen MR (1984) Effects of pacing on triggered activity induced by early afterdepolarizations. Circulation 69: 1013–1025

    PubMed  CAS  Google Scholar 

  • Dangman KH, Hoffman BF (1983) Studies on overdrive stimulation of canine cardiac Purkinje fibers: maximal diastolic potential as a determinant of the response. J Am Coll Cardiol 2: 1183–1190

    PubMed  CAS  Google Scholar 

  • Dangman KH, Danilo P Jr, Hordof AJ, Mary-Rabine L, Reder RF, Rosen MR (1982) Electrophysiologic characteristics of human ventricular and Purkinje fibers. Circulation 65: 362–368

    PubMed  CAS  Google Scholar 

  • Danilo P Jr, Vulliemoz Y, Verosky M, Rosen MR (1978) Epinephrine-induced automati- city of canine Purkinje fibers and its relationship to the adenylate cyclase adenosine 3′,5′-monophosphate system. J Pharmacol Exp Ther 205: 175–182

    PubMed  CAS  Google Scholar 

  • Danilo P Jr, Rosen TS (1982) Effects of terbutaline on cardiac automaticity and contractility. J Clin Pharmacol 22: 223–230

    PubMed  CAS  Google Scholar 

  • Danilo P Jr, Rosen MR, Hordof AJ (1978) Effects of acetylcholine on the ventricular specialized conducting system of neonatal and adult dogs. Circ Res 43: 777–784

    PubMed  CAS  Google Scholar 

  • DiFrancesco D (1981a) A new interpretation of the pace-maker current in calf Purkinje fibers. J Physiol (Lond) 314: 359–376

    CAS  Google Scholar 

  • DiFrancesco D (1981b) A study of the ionic nature of the pace-maker current in calf Purkinje fibers. J Physiol (Lond) 314: 377–393

    CAS  Google Scholar 

  • Drugge ED, Robinson RB (1987) The trophic influence of sympathetic neurons on the cardiac alpha adrenergic response requires close nerve-muscle association. Dev Pharmacol Ther 10: 47–59

    PubMed  CAS  Google Scholar 

  • Drugge ED, Rosen MR, Robinson RB (1985) Neuronal regulation of the development of the alpha-adrenergic chronotropic response in the rat heart. Circ Res 57: 415–423

    PubMed  CAS  Google Scholar 

  • Dukes ID, Vaughan Williams EMI (1984) Effects of selective α1-, α1-, β1- and β2-adrenoceptor stimulation on potentials and contractions in the rabbit heart. J Physiol (Lond) 355: 523–546

    CAS  Google Scholar 

  • Ferrer PL (1977) Arrhythmias in the neonate. In: Roberts NK, Gelband H (eds) Cardiac arrhythmias in the neonate, infant and child. Appleton, New York, pp 265–316

    Google Scholar 

  • Ferrier GR (1980) Effects of transmembrane potential on oscillatory afterpotentials induced by acetylstrophanthidin in canine ventricular tissue. J Pharmacol Exp Ther 215: 332–341

    PubMed  CAS  Google Scholar 

  • Ferrier GR, Saunders J, Mendez C (1973) A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ Res 32: 600–609

    PubMed  CAS  Google Scholar 

  • Fields JZ, Roeske WR, Morkin E, Yamamura HI (1978) Cardiac muscarinic cholinergic receptors. Biochemical identification and characterization. J Biol Chem 253: 3251–3258

    PubMed  CAS  Google Scholar 

  • Frame LH, Hoffman BF (1984) Mechanisms of tachycardia. In: Surawicz B, Pratap Reddy C, Prystowsky EN (eds) Tachycardias. Martinus Nijhoff, Boston, pp 7–36

    Google Scholar 

  • Friedman WF, Pool PE, Jacobowitz D, Seagren SC, Braunwald E (1968) Sympathetic innervation of the developing rabbit heart—biochemical and histochemical comparison of fetal, neonatal, and adult myocardium. Circ Res 23: 25–32

    PubMed  CAS  Google Scholar 

  • Gadsby DC, Wit AL, Cranefield PF (1978) The effect of acetylcholine on the electrical activity of canine cardiac Purkinje fibers. Circ Res 1978: 29–35

    Google Scholar 

  • Garnier D, Nargeot J, Ojeda C, Rougier O (1978) The action of acetylcholine on background conductance in frog atrial trabeculae. J Physiol (Lond) 274: 381–396

    CAS  Google Scholar 

  • Gettes LS, Reuter H (1974) Slow recovery from inactivation of inward currents in mammalian myocardial fibers. J Physiol (Lond) 240: 703–704

    CAS  Google Scholar 

  • Giles WR, Noble SJ (1976) Changes in membrane currents in bullfrog atrium produced by acetylcholine. J Physiol (Lond) 261: 103 - 123

    CAS  Google Scholar 

  • Gilman AG (1987) G Proteins: transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649

    PubMed  CAS  Google Scholar 

  • Giotti A, Ledda F, Mannaioni PF (1973) Effects of noradrenaline and isoprenaline, in combination with alpha- and beta-receptor blocking substances, on the action potential of cardiac Purkinje fibers. J Physiol (Lond) 229: 99–113

    CAS  Google Scholar 

  • Hashimoto K, Moe GK (1973) Transient depolarizations induced by acetylstrophanthidin in specialized tissue of dog atrium and ventricle. Circ Res 32: 618–624

    PubMed  CAS  Google Scholar 

  • Hewett KW, Rosen MR (1984) Alpha and beta adrenergic interactions with ouabain-induced delayed afterdepolarizations. J Pharmacol Exp Ther 229: 188–192

    PubMed  CAS  Google Scholar 

  • Hewett KW, Rosen MR (1985) Developmental changes in the rabbit sinus node action potential and its response to adrenergic agonists. J Pharmacol Exp Ther 235: 308–312

    PubMed  CAS  Google Scholar 

  • Hoffman BF, Cranefield PF (1960) Electrophysiology of the heart. McGraw-Hill, New York, pp 104–174

    Google Scholar 

  • Hoffman BF, Rosen MR (1981) Cellular mechanisms for cardiac arrhythmias. Circ Res 49: 1–15

    PubMed  CAS  Google Scholar 

  • Hoffman BF, Suckling EE (1953) Cardiac cellular potentials: effect of vagal stimulation and acetylcholine. Am J Physiol 173: 312–320

    PubMed  CAS  Google Scholar 

  • Hordof AJ, Edie R, Malm JR, Hoffman BF, Rosen MR (1976) Electrophysiologic properties and response to pharmacologic agents of fibers from diseased human atria. Circulation 54: 774–779

    PubMed  CAS  Google Scholar 

  • Hume JR, Katzung BG (1978) The effects of alpha and beta adrenergic agonists upon depolarization-induced ventricular automaticity. Proc West Pharmacol Soc 21: 77–81

    PubMed  CAS  Google Scholar 

  • Inui J, Imamura H (1977) Effects of acetylcholine on calcium-dependent electrical and mechanical responses in the guinea-pig papillary muscle partially depolarized by potassium. Naunyn Schmiedebergs Arch Pharmacol 229: 1–7

    Google Scholar 

  • Jacobowitz DM, Cooper T, Barner HB (1967) Histochemical and chemical studies of the localization of adrenergic and cholinergic nerves in normal and denervated cat hearts. Circ Res 20: 289–298

    PubMed  CAS  Google Scholar 

  • Jones LR, Besch HR Jr, Fleming JW, McConnaughey MM, Watanabe AM (1979) Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum. J Biol Chem 254: 530–539

    PubMed  CAS  Google Scholar 

  • Katzung BG, Morgenstern JA (1977) Effects of extracellular potassium on ventricular automaticity and evidence for a pacemaker current in mammalian ventricular myocardium. Circ Res 40: 105–111

    PubMed  CAS  Google Scholar 

  • Kent KM, Epstein SE, Cooper T, Barner HB (1974) Cholinergic innervation of the canine and human ventricular conducting system: anatomic and electrophysiologic correlations. Circulation 50: 948–955

    PubMed  CAS  Google Scholar 

  • Kimura S, Cameron JS, Kozlovskis PL, Bassett AL, Myerburg RJ (1984) Delayed after- depolarizations and triggered activity induced in feline Purkinje fibers by alpha- adrenergic stimulation in the presence of elevated calcium levels. Circulation 70: 1074–1082

    PubMed  CAS  Google Scholar 

  • Kupfer LE, Robinson RB, Bilezikian JP (1982) Identification of alpharadrenergic receptors in cultured rat myocardial cells with a new iodinated alpha1-adrenergic antagonist, [125I]IBE 2254. Circ Res 51: 250–254

    PubMed  CAS  Google Scholar 

  • Lau YH, Robinson RB, Rosen MR, Bilezikian JP (1980) Subclassification of beta-adrenergic receptors in cultured rat cardiac myoblasts and fibroblasts. Circ Res 47: 41–48

    PubMed  CAS  Google Scholar 

  • Le Marec H, Dangman KH, Danilo P Jr, Rosen MR (1985) An evaluation of automaticity and triggered activity in the canine heart one to four days after myocardial infarction. Circulation 71: 1224–1236

    PubMed  Google Scholar 

  • Levine JH, Spear JF, Guarnieri T, Weisfeldt ML, de Langen CDJ, Becker LC, Moore EN (1985) Cesium chloride-induced long QT syndrome: demonstration of afterdepolarizations and triggered activity in vivo. Circulation 72: 1092–1103

    PubMed  CAS  Google Scholar 

  • Levy MN (1971) Sympathetic-parasympathetic interactions in the heart. Circ Res 29: 437–445

    PubMed  CAS  Google Scholar 

  • Levy MN, Zieske H (1969) Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol 27: 465–470

    PubMed  CAS  Google Scholar 

  • Lipp JAM, Rudolph AM (1972) Sympathetic nerve development in the rat and guinea-pig heart. Biol Neonate 21: 76–82

    PubMed  CAS  Google Scholar 

  • Manalan AS, Besch HR, Watanabe AM (1981) Characterization of [3H](±) carazol binding to beta-adrenergic receptor subtypes in canine ventricular myocardium and lung. Circ Res 49: 326–336

    PubMed  CAS  Google Scholar 

  • Mary-Rabine L, Hordof AJ, Bowman FO, Malm JR, Rosen MR (1978) Alpha and beta adrenergic effects on human atrial specialized conducting fibers. Circulation 57: 84–90

    PubMed  CAS  Google Scholar 

  • Mary-Rabine L, Hordof AJ, Danilo P Jr., Malm JR, Rosen MR (1980) Mechanisms for impulse initiation in isolated human atrial fibers. Circ Res 47: 267–277

    PubMed  CAS  Google Scholar 

  • Minneman KP, Hegstrand LR, Molinoff PB (1979) The pharmacological specificity of beta1 and beta2 adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol 16: 21–33

    PubMed  CAS  Google Scholar 

  • Moak JP, Reder RF, Danilo P Jr, Rosen MR (1986) Developmental changes in the interaction of cholinergic and beta-adrenergic agonists on the electrophysiological properties of canine Purkinje fibers. Pediatr Res 20: 613–618

    PubMed  CAS  Google Scholar 

  • Moe GK (1975) Evidence for reentry as a mechanism for cardiac arrhythmias. Rev Physiol Biochem Pharmacol 72: 56–66

    Google Scholar 

  • Natham D, Beeler GW (1975) Electrophysiologic correlates of the inotropic effects of isoproterenol in canine myocardium. J Mol Cell Cardiol 7: 1–15

    Google Scholar 

  • Osnes JB, Refsum H, Skomedal T, Oye I (1978) Qualitative differences between beta- adrenergic and alpha-adrenergic inotropic effects in rat heart muscle. Acta Pharmacol Toxicol 42: 235–247

    CAS  Google Scholar 

  • Pappano AJ (1977) Ontogenic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts. Pharmacol Rev 29: 3–33

    PubMed  CAS  Google Scholar 

  • Pappano AJ (1984) The development of postsynaptic cardiac autonomic receptors and their regulation of cardiac function during embryonic, fetal, and neonatal life. In: Speralakis N (ed) Physiology and pathophysiology of the heart. Martinus Nijhoff, Boston, pp 355–375

    Google Scholar 

  • Posner P, Farrar E, Lambert CR (1976) Inhibitory effects of catecholamines in canine cardiac Purkinje fibers. Am J Physiol 231: 1415–1420

    PubMed  CAS  Google Scholar 

  • Prystowsky EN, Jackman WM, Rinkenberger RL, Heger JJ, Zipes DP (1981) Effect of autonomic blockade on ventricular refractoriness and atrioventricular nodal conduction in humans. Evidence supporting a direct cholinergic action on ventricular muscle refractoriness. Circ Res 49: 511–518

    Google Scholar 

  • Randall WC (1977) Sympathetic control of the heart. In: Randall WC (ed) Neuronal regulation of the heart. Oxford University, New York, pp 45–94

    Google Scholar 

  • Reder RF, Danilo P Jr, Rosen MR (1984) Developmental changes in alpha adrenergic effects on canine Purkinje fiber automaticity. Dev Pharmacol Ther 7: 94–108

    PubMed  CAS  Google Scholar 

  • Reuter H (1979) Properties of two inward membrane currents in the heart. Ann Rev Physiol 41: 413–424

    CAS  Google Scholar 

  • Rosen MR, Gelband H, Hoffman BF (1973 a) Correlation between effects of ouabain in the canine electrocardiogram and transmembrane potentials of isolated Purkinje fibers. Circulation 47: 65–72

    PubMed  CAS  Google Scholar 

  • Rosen MR, Gelband H, Merker C, Hoffman BF (1973 b) Mechanisms of digitalis toxicity: effects of ouabain on phase 4 of Purkinje fiber transmembrane potential. Circulation 47: 681–689

    Google Scholar 

  • Rosen MR, Hordof AJ, Ilvento JP, Danilo P Jr (1977) Effect of adrenergic amines on electrophysiological propeties and automaticity of neonatal and adult canine Purkinje fibers: Evidence for alpha and beta-adrenergic actions. Circ Res 40: 390–400

    PubMed  CAS  Google Scholar 

  • Rosen T, Lin M, Spector S, Rosen MR (1979) Maternal, fetal and neonatal effects of chronic propranolol administration in the rat. J Pharmacol Exp Ther 208: 118–122

    PubMed  CAS  Google Scholar 

  • Rosen MR, Weiss RM, Danilo P Jr (1984) Effects of alpha adrenergic agonists and blockers on Purkinje fiber transmembrane potentials and automaticity in the dog. J Pharmacol Exp Ther 231: 566–571

    PubMed  CAS  Google Scholar 

  • Rosen MR, Steinberg SF, Chow YK, Bilezikian JP, Danilo P Jr (1987) The role of a pertussis-toxin sensitive protein in the modulation of canine Purkinje fiber automaticity. Circ Res 62: 315–323

    Google Scholar 

  • Scherf D (1947) Studies on auricular tachycardia caused by aconitine administration. Proc Soc Exp Biol Med 64: 233–239

    PubMed  CAS  Google Scholar 

  • Schümann HJ, Wagner J, Knorr A, Reidemeister JC, Sadony V, Schramm G (1978) Demonstration in human atrial preparations of alpha-adrenoceptors mediating positive inotropic effects. Naunyn Schmiedebergs Arch Pharmacol 302: 333–336

    PubMed  Google Scholar 

  • Sharma VK, Banerjee SP (1978) Presynaptic muscarinic cholinergic receptors. Nature 272: 276–278

    PubMed  CAS  Google Scholar 

  • Sheridan DJ, Penkoske PA, Sobel BE, Corr PB (1980) Alpha adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest 65: 161–171

    PubMed  CAS  Google Scholar 

  • Smith WM, Gallagher JJ (1980) “Les torsades de pointes”: an unusual ventricular arrhythmia. Ann Intern Med 93: 578–584

    Google Scholar 

  • Spear JF, Moore EN (1973) Influence of brief vagal and stellate nerve stimulation on pacemaker activity and conduction within the atrioventricular conduction system of the dog. Circ Res 32: 27–41

    PubMed  CAS  Google Scholar 

  • Speralakis N, Pappano AJ (1983) Physiology and pharmacology of developing heart cells. Pharmacol Ther 22: 1–39

    Google Scholar 

  • Spinelli W, Danilo P Jr, Buchthal SD, Rosen MR (1986) Developmental changes in the effects of beta-adrenergic blocking concentrations of propranolol on canine Purkinje fibers. Dev Pharmacol Ther 9: 412–426

    PubMed  CAS  Google Scholar 

  • Standen NB (1978) The postnatal development of adrenoreceptor responses to agonists and electrical stimulation in rat isolated atria. Br J Pharmacol 64: 83–89

    PubMed  CAS  Google Scholar 

  • Steinberg SF, Drugge ED, Bilezikian JP, Robinson RB (1985) Innervated cardiac myocytes acquire a pertussis toxin-specific regulatory protein functionally linked to the alpharreceptor. Science 230: 186–188

    PubMed  CAS  Google Scholar 

  • Strauss HC, Prystowsky EN, Scheinman MM (1977) Sino-atrial and atrial electrogenesis. Prog Cardiovasc Dis 19: 385–404

    PubMed  CAS  Google Scholar 

  • Surawicz B, Imanishi S (1976) Automatic activity in depolarized guinea pig ventricular myocardium: characteristics and mechanisms. Circ Res 39: 751–759

    PubMed  Google Scholar 

  • Ten Eick R, Nawrath H, McDonald TF, Trautwein W (1976) On the mechanisms of the negative inotropic effect of acetylcholine. Pflugers Arch 361: 207–213

    PubMed  Google Scholar 

  • Trautwein W, Kuffler SW, Edwards C (1956) Changes in membrane characteristics of heart muscle during inhibition. J Gen Physiol 40: 135–145

    PubMed  Google Scholar 

  • Tsien RW (1974) Adrenaline-like effects produced by intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibers. Nature New Biol 245: 120–122

    Google Scholar 

  • Tsien RW, Giles WR, Greengard P (1972) Cyclic AMP mediated the action of adrenaline on the action potential plateau of cardiac Purkinje fibers. Nature New Biol 240: 181–183

    PubMed  CAS  Google Scholar 

  • Tuttle RR, Hillman CC, Toomey RE (1976) Differential beta adrenergic sensitivity of atrial and ventricular tissue assessed by chronotropic, inotropic and cyclic AMP responses to isoprenaline and dobutamine. Cardiovasc Res 10: 452–458

    PubMed  CAS  Google Scholar 

  • Urthaler F, Walker AA, James TN (1980) Changing negative inotropic effects of acetyl-choline in maturing canine cardiac muscle. Am J Physiol 238: H1–7

    Google Scholar 

  • Vassalle M (1979) Electrogenesis of the plateau and pacemaker potential. Annu Rev Physiol 41: 425–440

    PubMed  CAS  Google Scholar 

  • Vassalle M, Barnabei O (1971) Norepinephrine and potassium fluxes in cardiac Purkinje fibers. Pflugers Arch 322: 287–303

    PubMed  CAS  Google Scholar 

  • Vassalle M, Caress DL, Slovin AJ, Stuckey JH (1967 a) On the cause of ventricular asystole during vagal stimulation. Circ Res 20: 228–241

    PubMed  CAS  Google Scholar 

  • Vassalle M, Vagnini FJ, Gourin A, Stuckey JH (1967 b) Suppression and initiation of idoventricular automaticity during vagal stimulation. Am J Physiol 212: 1–7

    PubMed  CAS  Google Scholar 

  • Verrier RL, Lown B (1978) Sympathetic-parasympathetic interactions and ventricular electrical stability. In: Swartz PJ, Brown AM, Malliani A, Zanchetti A (eds) Neural mechanisms in cardiac arryhthmias. Raven, New York, pp 75–85

    Google Scholar 

  • Walker D (1969) Functional development of the autonomic innervation of the human heart. Biol Neonate 25: 31–42

    Google Scholar 

  • Watanabe AM, Lindemann JP (1984) Mechanisms of adrenergic and cholinergic regulation of myocardial contractility. In: Speralakis N (ed) Physiology and pathophysiology of the heart. Martinus Nijhoff, Boston, pp 377–404

    Google Scholar 

  • Watanabe AM, Jones LR, Manalan AS, Besch HR Jr (1982) Cardiac autonomic receptors: recent concepts from radiolabeled ligand-binding studies. Circ Res 50: 161–174

    PubMed  CAS  Google Scholar 

  • Waxman MB, Wald RW (1977) Termination of ventricular tachycardia by an increase in cardiac vagal drive. Circulation 56: 385–391

    PubMed  CAS  Google Scholar 

  • Wiggers CS (1940) The mechanism and nature of ventricular fibrillation. Am Heart J 20: 399–412

    Google Scholar 

  • Wit AL, Cranefìeld PF (1976) Triggered activity in cardiac muscle fibers of the simian mitral valve. Circ Res 38: 85–98

    PubMed  CAS  Google Scholar 

  • Wit AL, Cranefìeld PF (1977) Triggered and automatic activity in the canine coronary sinus. Circ Res 41: 435–445

    Google Scholar 

  • Wit AL, Cranefìeld PF (1978) Reentrant excitation as a cause of cardiac arrhythmias. Am J Physiol 235: H1–H17

    PubMed  CAS  Google Scholar 

  • Wit AL, Hoffman BF, Rosen MR (1975) Electrophysiology and pharmacology of cardiac arrhythmias. IX. Cardiac electrophysiological effects of beta adrenergic receptor stimulation and blockade. Part A. Am Heart J 90: 521–533

    CAS  Google Scholar 

  • Yamada S, Yamamura HI, Roeske WR (1980) Characterizations of alpha1 adrenergic receptors in the heart using [3H]WB4101: effect of 6-hydroxydopamine treatment. J Pharmacol Exp Ther 215: 176–185

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spinelli, W., Rosen, M.R. (1989). Autonomic Mechanisms in Cardiac Rhythm and Arrhythmias. In: Vaughan Williams, E.M. (eds) Antiarrhythmic Drugs. Handbook of Experimental Pharmacology, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73666-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73666-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73668-1

  • Online ISBN: 978-3-642-73666-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics