Skip to main content

Acute and Chronic Animal Models of Cardiac Arrhythmias

  • Chapter
Antiarrhythmic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 89))

Abstract

Animal models have played a major role in the development of new antiarrhythmic drugs as well as contributed to our understanding of the mechanisms of antiarrhythmic drug action. The number and diversity of experimental animal models used to screen and evaluate potential antiarrhythmic agents points out the inadequacy of any one model to reproduce the malignant arrhythmias which occur in man. An ideal animal model would both closely simulate a human counterpart and permit control of most variables. “All animal models are wrong, but some are useful” because by selecting the appropriate animal model valuable information can be obtained. Most animal models are nonatherogenic, nonprimate, and arrhythmias occur in ischemic or infarcted hearts with otherwise normal coronary anatomy. In animals drug dosages and metabolites differ from those in humans and concomitant pulmonary, renal and hepatic disease is not present. In spite of their limitations, animal models still have to be used to develop and evaluate pharmacological, surgical and electrical pacing techniques for controlling and preventing malignant arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Corbalan R, Verrier RL, Lown B (1974) Psychologic stress and ventricular arrhythmia during myocardial infarction in the conscious dog. Am J Cardiol 34: 692

    Article  PubMed  CAS  Google Scholar 

  • El-Sherif N, Hope RR, Scherlag BJ, Lazzara R (1977) Reentrant arrhythmias in the late myocardial infarction period. II. Patterns of initiation and termination of reentry. Circulation 55: 702

    Google Scholar 

  • Frame LH, Page RL, Hoffman BF (1986) Atrial reentry around an anatomical barrier with a partial refractory gap: a canine model of atrial flutter. Circ Res 58: 495–511

    Google Scholar 

  • Han J (1969) Ventricular vulnerability during acute coronary occlusion. Am J Cardiol 24: 857–864

    Article  PubMed  CAS  Google Scholar 

  • Harris AS, Rojas AG (1943) Initiation of ventricular fibrillation due to coronary occlusion. Exp Med Surg 1: 105

    Google Scholar 

  • Horowitz LN, Spear JF, Josephson ME, Kastor JA, MacVaugh H, Moore EN (1977) Ventricular fibrillation threshold in man. Am J Physiol 39: 274

    Google Scholar 

  • Kaplinsky E, Ogawa S, Balke CW, Dreifus LS (1979) Two periods of early ventricular arrhythmia in the canine acute myocardial infarction model. Circulation 60: 397–403

    Google Scholar 

  • Karaqueuzian HS, Fenoglio JJ, Weiss MB, Wit AL (1979) Protracted ventricular tachycardia induced by premature stimulation of the canine heart after coronary artery occlusion and reperfusion. Circ Res 44: 833–846

    Google Scholar 

  • Levine JH, Spear JF, Guarnieri T, Weisfeldt ML, DeLangen CDJ, Becker LC, Moore EN (1985) Cesium chloride-induced long QT syndrome: demonstration of afterdepolarizations and triggered activity in vivo. Circulations 72 (5): 1092–1103

    Article  CAS  Google Scholar 

  • Michelson El, Spear JF, Moore EN (1980) Electrophysiologic and anatomic correlates of sustainend ventricular tachyarrhythmias in a model of chronic myocardial infarction. Am J Cardiol 45: 583–590

    Article  PubMed  CAS  Google Scholar 

  • Moore EN, Spear JF, Feldman HS, Moller R (1978) Electrophysiological properties of a new antiarrhythmic drug—Tocainide. Am J Physiol 41: 703

    Google Scholar 

  • Moore EN, Spear JF, Michelson EL (1981) Non-canine animal models for evaluating antiarrhythmic efficacy. In: Morganroth J, Moore EN, Dreifus LS, Michelson EL (eds) The evaluation of new antiarrhythmic drugs. Nijhoff, The Hague

    Google Scholar 

  • Myerburg RJ, Gelband H, Nilsson K, Sung RJ, Thurer RJ, Morales AR, Bassett AL (1977) Long-term electrophysiological abnormalities resulting from experimental myocardial infarction in cats. Circ Res 41: 73–84

    Google Scholar 

  • Page PL, Plumb VJ, Okumura K, Waldo AL (1986) A new animal model of atrial flutter. J Am Coll Cardiol 8 (4): 8 72–879

    Google Scholar 

  • Schwartz PJ, Brown AM, Malliani A, Zanchetti A (1978) Neural mechanisms in cardiac arrhythmias. Raven, New York

    Google Scholar 

  • Skinner JE, Lie JT, Entman ME (1975) Modification of ventricular fibrillation latency following coronary artery occlusion in the conscious pig: the effect of psychological stress and beta adrenergic blockade. Circulation 51:656

    Google Scholar 

  • Spear JF, Moore EN (1973) The influence of brief vagal and stellate nerve stimulation on pacemaker activity and conduction within the atrioventricular conduction system of the dog. Circ Res 32: 27–41

    PubMed  CAS  Google Scholar 

  • Spear JF, Moore EN (1982) Mechanisms of cardiac arrhythmias. Annu Rev Physiol 44: 485

    Article  Google Scholar 

  • Spielman SR, Michelson EL, Horowitz LN, Spear JF, Moore EN (1978) The limiations of epicardial mapping as a guide to the surgical therapy of ventricular tachycardia. Circulation 57: 666–670

    PubMed  CAS  Google Scholar 

  • Vaughan Williams EM, Sekiya A (1963) Prevention of arrhythmias due to cardiac glycosides by block of β-sympathetic receptors. Lancet 1: 420–421

    Google Scholar 

  • Verrier RL, Lown B (1978) Sympathetic-parasympathetic interactions and ventricular electrical stability. In: Schwartz PJ, Brown AM, Malliani A, Zanchetti A (eds) Neural mechanisms in cardiac arrhythmias. Raven, New York

    Google Scholar 

  • VWiggers CJ, Wegria R (1940) Ventricular fibrillation due to single localized induction and condenser shock applied during the vulnerable phase of ventricular systole. Am J Physiol 128: 500–505

    Google Scholar 

  • Zipes DP, Bailey JC, Elhararrar B (eds) (1980) The slow inward current and cardiac arrhythmias. Nijhoff, The Hague

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moore, E.N., Spear, J.F. (1989). Acute and Chronic Animal Models of Cardiac Arrhythmias. In: Vaughan Williams, E.M. (eds) Antiarrhythmic Drugs. Handbook of Experimental Pharmacology, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73666-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73666-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73668-1

  • Online ISBN: 978-3-642-73666-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics