Skip to main content

Alpha-Adrenoceptors in Arrhythmogenesis

  • Chapter
Antiarrhythmic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 89))

  • 178 Accesses

Abstract

Since alpha-adrenoceptors perform many physiological roles in the nervous and cardiovascular systems it is inevitable that, theoretically, their activation or blockade will impinge on any dysrhythmogenic process. Empirical observation also clearly shows that activation of the sympathetic nervous system can be dysrhythmogenic (Chap. 12), either when it is excessive or when some defect of cardiac function already exists, and that drugs which are known to be alpha-adrenoceptor antagonists can alleviate this. At present the fundamental basis of this phenomenon is not entirely clear. Consequently an opportunity may exist, by clarifying this, to increase the rational basis of antiarrhythmic therapy. To this end, this chapter reviews the roles of alpha-adrenoceptors in the heart or with a bearing on cardiac function, with particular emphasis on possible influences on normal or abnormal cardiac rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AhlquistRP (1948) A study of adrenotropic receptors. Am J Physiol 153: 586–600

    Google Scholar 

  • Alabaster VA, Peters CJ, Keir RF (1986) Comparison of potency of alpha 2 antagonists in vitro: evidence for heterogeneity of alpha-2 adrenoceptors. Br J Pharmacol 88: 607–615

    Google Scholar 

  • Andrejak M, Ward M, Schmitt H (1983) Cardiovascular effects of yohimbine in anaesthetized dogs. Eur J Pharmacol 94: 219–228

    PubMed  CAS  Google Scholar 

  • Antonaccio MJ, Halle J, Kerwin L (1974) Functional significance of alpha-stimulation and alpha-blockade on responses to cardiac nerve stimulation in anesthetized dogs. Life Sci 15: 765–777

    Google Scholar 

  • Armstrong JM, Boura ALA (1973) Effects of clonidine and guanethidine on peripheral symphathetic nerve function in the pithed rat. Br J Pharmacol 47: 850–852

    Google Scholar 

  • Aubry ML, Davey MJ, Petch B (1985) Cardioprotective and antidysrhythmic effects of alpha-1-adrenoceptor blockade during myocardial ischaemia and reperfusion in the dog. J Cardiovasc Pharmacol 7: S93–S102

    Google Scholar 

  • Baker DJ, Drew GM, Hilditch A (1984) Presynaptic alpha-adrenoceptors: do exogenous and neuronally released noradrenaline act at different sites? Br J Pharmacol 81: 457–464

    Google Scholar 

  • Benfey BG (1982) Function of myocardial alpha-adrenoceptors. Life Sci 31:101-112 Benfey BG, Varma DR (1967) Interactions of sympathomimetic drugs, propranolol and phentolamine, on atrial refractory period and contractility. Br J Pharmacol 30: 603–611

    Google Scholar 

  • Bertha BG, Folts JD (1984) Inhibition of epinephrine-exacerbated coronary thrombus formation by prostacyclin in the dog. J Lab Clin Med 103: 204–214

    PubMed  CAS  Google Scholar 

  • Berthelsen S, Pettinger WA (1977) A functional basis for classification of alpha-adrenergic receptors. Life Sci 21: 595–606

    Google Scholar 

  • Bigaud M, Spedding M (1987) Inhibition of the effects of endothelial-derived relaxant factor ( EDRF) in aorta by palmityl carnitine. Br J Pharmacol 89: 540P.

    Google Scholar 

  • Bilezikian JP, Loeb JN (1983) The influence of hyperthyroidism and hypothyroidism on alpha- and beta-adrenergic receptor systems and adrenergic responsiveness. En- docr Rev 4: 378–388

    Google Scholar 

  • Bolli R, Ware JA, Brandon TA, Weilbaecher AG, Mace ML Jr (1984) Platelet-mediated thrombosis in stenosed canine coronary arteries: inhibition by nicergoline, a platelet-active alpha-adrenergic antagonist. J Am Coll Cardiol 3: 1417–1426

    PubMed  CAS  Google Scholar 

  • Bolli R, Brandon TA, Mace ML Jr, Weilbaecher DG (1985) Influence of alpha-adrenergic blockade on platelet-mediated thrombosis in stenosed canine coronary arteries. Cardiovasc Res 19: 146–154

    Google Scholar 

  • Bralet J, Didier J, Moreau D, Opie LH, Rochette L (1985) Effect of alpha-adrenoceptor antagonists (phentolamine, nicergoline and prazosin) on reperfusion arrhythmias and noradrenaline release in perfused rat heart. Br J Pharmacol 84: 9–18

    Google Scholar 

  • Brown JH, Buxton IL, Brunton LL (1985) Alpha-1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57: 532–537

    Google Scholar 

  • Brown MJ, Struthers AD, Di Silvio L, Yeo T, Ghatei M, Burrin JM (1985) Metabolic and haemodynamic effects of alpha-2-adrenoceptor stimulation and antagonism in man. Clin Sci 68: 137s–139

    PubMed  CAS  Google Scholar 

  • Bruckner R, Scholz H (1984) Effects of alpha-adrenoceptor stimulation with phenylephrine in the presence of propranolol on force of contraction, slow inward current and cyclic AMP content in the bovine heart. Br J Pharmacol 82: 223–232

    Google Scholar 

  • Bruckner R, Mugge A, Scholz H (1985) Existence and functional role of alpha-one adrenoceptors in the mammalian heart. J Mol Cell Cardiol 17: 639–645

    Google Scholar 

  • Bufflngton CW, Feigl EO (1983) Effect of coronary artery pressure on transmural distribution of adrenergic coronary vasoconstriction in the dog. Circ Res 53: 613–621

    Google Scholar 

  • Bush LR, Campbell WB, Kern K, Tilton GD, Apprill P, Ashton J, Schmitz J, Buja LM, Willerson JT (1984) The effects of alpha 2-adrenergic and serotonergic receptor antagonists on cyclic blood flow alterations in stenosed canine coronary arteries. Circ Res 55: 642–652

    Google Scholar 

  • Bylund DB, U’Prichard DC (1983) Characterisation of alpha-1 and alpha-2 adrenergic receptors. Int Rev Neurobiol 24: 343–431

    PubMed  CAS  Google Scholar 

  • Cambridge D, Davey MJ, Massingham R (1977) Prazosin, a selective antagonist of post-synaptic alpha-adrenoceptors. Br J Pharmacol 59: 514–515 P

    Google Scholar 

  • Chiariello M, Ribeiro LGT, Davis MA, Maroko PR (1977) ‘Reverse coronary steal’ induced by coronary vasoconstriction following coronary artery occlusion in dogs. Circulation 56:809P

    Google Scholar 

  • Chilian WM, Harrison D, Haws CW, Snyder WD, Marcus ML (1986) Adrenergic coronary tone during submaximal exercise in the dog is produced by circulating catecholamines. Evidence for adrenergic denervation supersensitivity in the myocardium but not in coronary vessels. Circ Res 58: 68–82

    Google Scholar 

  • Clanachan AS, McGrath JC (1976) Effects of ketamine on the peripheral autonomic nervous system of the rat. Br J Pharmacol 58: 247–252

    Google Scholar 

  • Clark MG, Patten GS (1984) Adrenergic regulation of glucose metabolism in rat heart. A calcium-dependent mechanism mediated by both alpha- and beta-adrenergic receptors. J Biol Chem 259: 15204–15211

    Google Scholar 

  • Clark MG, Patten GS, Filsell OH, Rattigan S (1983) Co-ordinated regulation of muscle glycolysis and hepatic glucose output in exercise by catecholamines acting via alpha-receptors. FEBS Lett 158: 1–6

    Google Scholar 

  • Clark RD, Michel AD, Whiting RL (1986) Pharmacology and structure-activity relationships of alpha-2-adrenoceptor antagonists. In: Ellis GP, West GB (eds) Progress in medicinal chemistry, vol 23. Elsevier, Amsterdam, pp 1–40

    Google Scholar 

  • Cocks TM, Angus JA (1983) Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305: 627–630

    PubMed  CAS  Google Scholar 

  • Corr PB, Shayman JA, Kramer JB, Kipnis RJ (1981) Increased alpha-adrenergic receptors in ischemic cat myocardium. J Clin Invest 67: 1232–1236

    Google Scholar 

  • Corr PB, Witkowski FX (1983) Potential electrophysiologic mechanisms responsible for dysrhythmias associated with reperfusion of ischemic myocardium. Circulation 68: Suppl 1: 116–124

    Google Scholar 

  • Dart AM, Riemersma RA (1985) Neurally mediated and spontaneous release of nora-drenaline in the ischemic and reperfused rat heart. J Cardiovasc Pharmacol 7: 45–49

    Google Scholar 

  • Dart AM, Schomig A, Dietz R, Mayer E, Kubler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part B. Effect of sympathetic nerve stimulation. Circ Res 55: 702–706

    Google Scholar 

  • Dart AM, Riemersma RA, Schomig A, Ungar A (1987 a) Metabolic requirements for release of endogenous noradrenaline during myocardial ischaemia and anoxia. Br J Pharmacol 90: 43–50

    Google Scholar 

  • Dart AM, Riemersma RA, Russell DC (1987 b) Differential effects of alpha-1 and alpha-2 adrenoceptor blockade on regional myocardial blood flow in acutely is- chaemic myocardium. Br J Pharmacol 90: 28 P

    Google Scholar 

  • Davey M J (1986) Alpha adrenoceptors—an overview. J Mol Cell Cardiol (Suppl V ) 18: 1–16

    Google Scholar 

  • Decker N, Schwartz J (1985) Postjunctional alpha-1 and alpha-2 adrenoceptors in the coronaries of the perfused guinea-pig heart. J Pharmacol Exp Ther 232: 251–257

    Google Scholar 

  • De Mey J, Vanhoutte PM (1981) Uneven distribution of postjunctional alpha-l-and alpha-2-like adrenoceptors on canine arterial and venous smooth muscle. Circ Res 48: 875–884

    Google Scholar 

  • Deussen A, Heusch G, Thamer V (1985) Alpha-2-adrenoceptor-mediated coronary vasoconstriction persists after exhaustion of coronary dilator reserve. Eur J Pharmacol 115: 147–153

    PubMed  CAS  Google Scholar 

  • Docherty JR (1983) An investigation of presynaptic alpha-adrenoceptor subtypes in the pithed rat heart. Br J Pharmacol 78: 655–657

    PubMed  CAS  Google Scholar 

  • Docherty JR (1983) An investigation of presynaptic alpha-adrenoceptor subtypes in the pithed rat heart and in the rat isolated vas deferens. Br J Pharmacol 82: 15–23

    Google Scholar 

  • Docherty JR, McGrath JC (1978) Sympathomimetic effects of pancuronium bromide on the cardiovascular system of the pithed rat: a comparison with the effects of drugs blocking the neuronal uptake of noradrenaline. Br J Pharmacol 64: 589–599

    Google Scholar 

  • Docherty JR, McGrath JC (1979) An analysis of some factors influencing alpha-adren- oceptor feed-back at the sympathetic junction in the rat heart. Br J Pharmacol 66: 55–63

    Google Scholar 

  • Docherty JR, McGrath JC (1980 a) A comparison of pre- and post-junctional potencies of several alpha-adrenoceptor agonists in the cardiovascular system and anococcy- geus of the rat: evidence for 2 types of postjunctional alpha-adrenoceptor. Naunyn Schmiedebergs Arch Pharmacol 312: 107–116

    Google Scholar 

  • Docherty JR, McGrath JC (1980 b) An examination of factors influencing adrenergic transmission in the pithed rat, with special reference to noradrenaline uptake mechanisms and post-junctional alpha-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 313: 101–111

    Google Scholar 

  • Docherty JR, MacDonald A, McGrath JC (1979) Further sub-classification of alpha- adrenoceptors in the cardiovascular system, vas deferens and anococcygeus of the rat. Br J Pharmacol 67: 421–422 P

    Google Scholar 

  • Drew GM (1976) Effects of alpha-adrenoceptor agonists and antagonists on pre- and postsynaptically located alpha-adrenoceptors. Eur J Pharmacol 36: 313–320

    PubMed  Google Scholar 

  • Drew GM (1985) What do antagonists tell us about alpha-adrenoceptors? Clin Sci 68: 15s–19s

    PubMed  Google Scholar 

  • Dukes ID, Vaughan Williams EM (1984 a) Effects of selective alpha-one-, alpha-two-, beta-one- and beta-two-adrenoceptor stimulation on potentials and contractions in the rabbit heart. J Physiol 355: 523–546

    Google Scholar 

  • Dukes ID, Vaughan Williams EM (1984 b) Electrophysiological effects of alpha-adrenoceptor antagonists in rabbit sino-atrial node, cardiac Purkinje cells and papillary muscles. Br J Pharmacol 83: 419–426

    Google Scholar 

  • Duncan GP, Patmore L, Spedding M (1987) Positive inotropic effects of palmitoyl carnitine in embryonic chick heart. Br J Pharmacol 89: 757 P

    Google Scholar 

  • Endoh M, Motomura S (1979) Differentiation by cholinergic stimulation of positive inotropic actions mediated via alpha- and beta-adrenoceptors in the rabbit heart. Life Sci 25: 759–768

    Google Scholar 

  • Endoh M, Schumann HJ (1975) Frequency-dependence of the positive inotropic effect of methoxamine and naphazoline mediated by alpha-adrenoceptors in the isolated rabbit papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 287: 377–389

    PubMed  CAS  Google Scholar 

  • Endoh M, Yamashita S (1980) Adenosine antagonizes the positive inotropic action mediated via beta, but not alpha-adrenoceptors in the rabbit papillary muscle. Eur J Pharmacol 65: 445–448

    PubMed  CAS  Google Scholar 

  • Fain JN, Garcia-Sainz A (1980) Role of phosphatidylinositol in alpha-1 and of adenylate cyclase in alpha-2 effects of catecholamines. Life Sci 26: 1183–1195

    Google Scholar 

  • Feigl EO (1983) Coronary physiology. Physiol Rev 63: 1–205

    PubMed  Google Scholar 

  • Flavahan NA, McGrath JC (1981a) Demonstration of simultaneous alpha-1-, alpha-2-, beta-1- and beta-2-adrenoceptor-mediated effects of phenylephrine in the cardio-vascular system of the pithed rat. Br J Pharmacol 72: 585 P

    Google Scholar 

  • Flavahan NA, McGrath JC (1981b) Alpha-1-adrenoceptors can mediate chronotropic responses in the rat heart. Br J Pharmacol 73: 586–588

    Google Scholar 

  • Flavahan NA, McGrath JC (1982) Alpha-1 adrenoceptor activation can increase heart rate directly or decrease it indirectly through parasympathetic activation. Br J Pharmacol 77: 319–328

    Google Scholar 

  • Flavahan NA, Vanhoutte PM (1986) Alpha-1 adrenoceptor subclassiflcation in vascular smooth muscle. Trends Pharmacol Sci 7: 347–349

    Google Scholar 

  • Forfar JC, Riemersma RA, Oliver MF (1983) Alpha-adrenoceptor control of norepinephrine release from acutely ischaemic myocardium: effects of blood flow, arrhythmias, and regional conduction delay. J Cardiovasc Pharmacol 5: 752–759

    Google Scholar 

  • Forfar JC, Russell DC, Riemersma RA (1985) Control of myocardial catecholamine release during acute ischemia. J Cardiovasc Pharmacol 5: S33–S39

    Google Scholar 

  • Fox AW, Juberg EN, May JM, Johnson RD, Abel PW, Minneman KP (1985) Thyroid status and adrenergic receptor subtypes in the rat: comparison of receptor density and responsiveness. J Pharmacol Exp Ther 235, 715–723

    Google Scholar 

  • Fuder H, Muscholl E, Spemann R (1983) The determination of presynaptic pA2 values of yohimbine and phentolamine on the perfused rat heart under conditions of negligible autoinhibition. Br J Pharmacol 79: 109–119

    Google Scholar 

  • Furchgott RF (1972) The classification of adrenoceptors (adrenergic receptors). In: Blaschko H, Muscholl E (eds) An evaluation from the standpoint of receptor theory. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 33 )

    Google Scholar 

  • Furchgott RF (1984) The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol 24: 175–197

    PubMed  CAS  Google Scholar 

  • Giles TD, Thomas MG, Sander GE, Quiroz AC (1985) Central alpha-adrenergic agonists in chronic heart failure and ischemic heart disease. J Cardiovasc Pharmacol 7: S51–55

    Google Scholar 

  • Gillespie JS (1980) Section II. Effects on the autonomic and on the central nervous system. A. Presynaptic receptors in the autonomic nervous system. Springer, Ber-lin Heidelberg New York, pp 169–205 (Handbook of experimental pharmacology, vol 54 )

    Google Scholar 

  • Godfraind T, Miller RC, Socrates Lima J (1982) Selective alpha-one- and alpha-two- adrenocepter agonist induced contractions and 45Ca++ fluxes in the rat isolated aorta. Br J Pharmacol 77: 597–604

    PubMed  CAS  Google Scholar 

  • Godfraind T, Egleme C, Osachie IA (1985) Role of endothelium in the contractile response of rat aorta to alpha-adrenoceptor agonists. Clin Sci 68: 65s–71s

    Google Scholar 

  • Govier WC (1967) A positive inotropic effect of phenylephrine mediated through alpha adrenergic receptors. Life Sci 6: 1361–1365

    PubMed  Google Scholar 

  • Graham JM, Keating WR (1975) Responses of inner and outer muscle of the sheep carotid artery to injury. J Physiol (Lond) 247: 437–482

    Google Scholar 

  • Grant TL, Flavahan NA, Greig J, McGrath JC, McKean CE, Reid JL (1985 a) Attempts to uncover subtypes of alpha-adrenoceptors and associated mechanisms by using sequential administration of blocking drugs. Clin Sci 68: 25s–30s

    Google Scholar 

  • Grant TL, McGrath JC, O’Brien (1985 b) The influence of blood gases on alpha-1- and alpha-2-adrenoceptor-mediated pressor responses in the pithed rat. Br J Pharmacol 86: 69–77

    Google Scholar 

  • Gwirtz PA, Overn SP, Mass HJ, Jones CE (1986) Alpha-1-adrenergic constriction li-mits coronary flow and cardiac function in running dogs. Am J Physiol 250: 1117–1126

    Google Scholar 

  • Harrison SM, Lamont Christine, Miller DJ (1986) Carnosine and other natural imida-zoles enhance muscle Ca sensitivity and are mimicked by caffeine and AR-L 115s. J Physiol (Lond) 371: 197 P

    Google Scholar 

  • Hatton R, Clough DP (1982) Captopril interferes with neurogenic vasoconstriction in the pithed rat by angiotensin dependent mechanisms. J Cardiovasc Pharmacol 4: 116–123

    Google Scholar 

  • Hattori Y, Levi R (1984) Adenosine selectively attenuates H2- and beta-mediated cardiac responses to histamine and norepinephrine: an unmasking of HI- and alpha-mediated responses. J Pharmacol Exp Ther 231: 215–223

    PubMed  CAS  Google Scholar 

  • Hayes JS, Pollock GD, Fuller RW (1984) In vivo cardiovascular responses to isoproterenol, dopamine and tyramine after prolonged infusion of isoproterenol. J Pharmacol Exp Ther 231: 633–639

    Google Scholar 

  • Heusch G, Yoshimoto N, Heegemann H, Thamer V (1983) Interaction of methoxa- mine with compensatory vasodilation distal to coronary stenoses. Arzneimittelfors- chung 33: 1647–1650

    Google Scholar 

  • Heusch G, Deussen A, Schipke J, Thamer V (1984 a) Alpha-1- and alpha-2-adrenocep- tor-mediated vasoconstriction of large and small canine coronary arteries in vivo. J Cardiovasc Pharmacol 6: 961–968

    Google Scholar 

  • Heusch G, Deussen A, Schipke J, Thamer V (1984b) Adenosine, dipyridamole and is- osorbide dinitrate are ineffective to prevent alpha-2-adrenergic vasoconstriction distal to severe coronary stenoses. Pflugers Arch 402: R27

    Google Scholar 

  • Heusch G, Deussen A, Schipke J, Vogelsgang H, Hoffman V, Thamer V (1985 a) Role of cardiac sympathetic nerves in the genesis of myocardial ischemia distal to coronary stenoses. J Cardiovasc Pharmacol 7: S13–18

    Google Scholar 

  • Heusch G, Deussen A, Thamer V (1985 b) Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J Auton Nerv Syst 13: 311–326

    Google Scholar 

  • Heusch G, Schipke J, Thamer V (1986) Sympathetic mechanisms in poststenotic myocardial ischemia. J Cardiovasc Pharmacol 8: S33–S40

    Google Scholar 

  • Heyndrickx GR, Vilaine JP, Moerman EJ, Leusen I (1984) Role of prejunctional alpha-2-adrenergic receptors in the regulation of myocardial performance during exercise in conscious dogs. Circ Res 54: 683–693

    Google Scholar 

  • Hieble JP, Sulpizio AC, Nichols AJ, DeMarinis RM, Pfeiffer FR, Lavanchy PG, Ruf- folo RR (1986) Pharmacological differentiation of pre- and postjunctional alpha2-adrenoceptors. J Hypertension 4 (Suppl 6): S189–S192

    Google Scholar 

  • Hirshfleld JW, Borer JS, Goldstein RE, Barrett MJ, Epstein SE (1974) Reduction in severity and extent of myocardial infarction when nitroglycerin and methoxamine are administered during coronary occlusion. Circulation 49: 291

    Google Scholar 

  • Hoffman BB, Lefkowitz RJ (1980) Radioligand binding studies of adrenergic receptors: new insights into molecular and physiological regulation. Annu Rev Pharmacol Toxicol 20: 581–608

    PubMed  CAS  Google Scholar 

  • Hoffman BF, Singer DH (1967) Appraisal of the effects of catecholamines on cardiac electrical activity. Ann NY Acad Sci 139: 914–939

    Google Scholar 

  • Holtz J, Saeed M, Sommer O, Bassenge E (1982) Norepinephrine constricts the canine coronary bed via postsynaptic alpha-2-adrenoceptors. Eur J Pharmacol 82: 199–202

    Google Scholar 

  • Inui J, Brodde OE, Schumann HJ (1982) Influence of acetylcholine on the positive in-

    Google Scholar 

  • otropic effect evoked by alpha- or beta-adrenoceptor stimulation in the rabbit heart. Naunyn Schmiedebergs Arch Pharmacol 320:152–159

    Google Scholar 

  • Ishac EJ, Pennefather JN, Handberg GM (1983) Effect of changes in thyroid state on atrial alpha- and beta-adrenoceptors, adenylate cyclase activity, and catecholamine levels in the rat. J Cardiovasc Pharmacol 5: 396–405

    Google Scholar 

  • Jackson CV, McGrath GM, McNeill JH (1986) Alterations in alpha-1-adrenoceptor stimulation of isolated atria from experimental diabetic rats. Can J Physiol Pharmacol 64: 145–151

    Google Scholar 

  • Jakobs KH (1979) Inhibition of adenylate cyclase by hormones and neurotransmitters. Mol Cell Endocrinol 16: 147–156

    PubMed  CAS  Google Scholar 

  • Jones CE, Liang IY, Maulsby MR (1986) Cardiac and coronary effects of prazosin and phenoxybenzamine during coronary hypotension. J Pharmacol Exp Ther 236: 204–211

    Google Scholar 

  • Kalsner S (1982) Evidence against the unitary hypothesis of agonist and antagonist action at presynaptic adrenoceptors. Br J Pharmacol 77: 375–380

    PubMed  CAS  Google Scholar 

  • Karliner JS, Barnes P, Hamilton CA, Dollery CT (1979) Alpha-1-adrenergic receptors in guinea pig myocardium: identification by binding of a new radioligand, (3H)-prazosin. Biochem Biophys Res Commun 90: 142–149

    Google Scholar 

  • Kobinger W, Pichler L (1982) Presynaptic activity of the imidazolidine derivate ST 587, a highly selective alpha-1 adrenoceptor agonist. Eur J Pharmacol 82: 203–206

    Google Scholar 

  • Lambert GA, Lang WJ, Friedman E, Meller E, Gershon S (1978) Pharmacological and biochemical properties of isomeric yohimbine alkaloids. Eur J Pharma- col: 49: 39–48

    CAS  Google Scholar 

  • Langer SZ (1979) Presynaptic regulation of catecholamine release. Biochem Pharmacol 23: 1793–1800

    Google Scholar 

  • Langer SZ, Adler-Graschinsky E, Giorgio O (1977) Physiological significance of alpha- adrenoceptor mediated negative feedback mechanism regulating noradrenaline re-lease during nerve stimulation. Nature 265: 648–650

    PubMed  CAS  Google Scholar 

  • Latifpour J, McNeill JH (1984) Cardiac autonomic receptors: effect of long-term experimental diabetes. J Pharmacol Exp Ther 230: 242–249

    Google Scholar 

  • Lefevre F, Fenard S, Cavero I (1977) Vascular beta-adrenoceptor stimulating properties of phenylephrine. Eur J Pharmacol 43: 85–88

    Google Scholar 

  • Lefkowitz RJ, Caron MG (1986) Regulation of adrenergic receptor function by phos-phorylation. J Mol Cell Cardiol 18: 885–895

    Google Scholar 

  • Leimdorfer A (1953) Prevention of cardiac arrhythmias by regitine. Arch Int Pharmacodyn Ther 94: 119–126

    PubMed  Google Scholar 

  • Lew MJ, Angus JA (1983) Clonidine and noradrenaline fail to inhibit vagal induced bradycardia. Evidence against prejunctional alpha-adrenoceptors on vagal varicosities in guinea pig right atria. Naunyn Schmiedebergs Arch Pharmacol 323: 228–232

    Google Scholar 

  • Lew MJ, Angus JA (1985) Alpha-1- and alpha-2-adrenoceptor mediated pressor responses: are they differentiated by calcium antagonism or by functional antagonism? J Cardiovasc Pharmacol 7: 401–408

    Google Scholar 

  • Luchelli-Fortis MA, Langer SZ (1974) Reserpine-induced depletion of the norepineph-rine stores: is it a reliable criterion for the classification of the mechanism of action of sympathomimetic amines? J Pharmacol Exp Ther 188: 640–653

    Google Scholar 

  • McGrath JC (1982) Commentary: evidence for more than one type of postjunctional alpha-adrenoceptor. Biochem Pharmacol 31: 467–484

    PubMed  Google Scholar 

  • McGrath JC (1984) Alpha-adrenoceptor antagonism by apoyohimbine and some observations on the pharmacology of alpha-adrenoceptors in the rat anococcygeus and vas deferens. Br J Pharmacol 82: 769–781

    PubMed  Google Scholar 

  • McGrath JC, Flavahan NA, McKean CE (1982) Alpha-1- and alpha-2-adrenoceptormediated pressor and chronotropic effects in the rat and rabbit. J Cardiovasc Pharmacol 4 S101–S107

    Google Scholar 

  • Maling HM, Moran NC (1957) Ventricular arrhythmias induced by sympathomimetic amines in unanesthetized dogs following coronary artery occlusion. Circ Res 5: 409–413

    Google Scholar 

  • Martin W, Furchgott RF, Villani GM, Jothianandan D (1986) Depression of contrac-tile responses in rat aorta by spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther 237: 529–538

    PubMed  CAS  Google Scholar 

  • Maze M, Smith CM (1983) Identification of receptor mechanism mediating epineph- rine-induced arrhythmias during halothane anaesthesia in the dog. Anesthesiology 59: 322–326

    Google Scholar 

  • Michell RH (1985) Inositol lipid breakdown as a step in alpha-adrenergic stimulus-response coupling. Clin Sci 68: 43s–46s

    PubMed  CAS  Google Scholar 

  • Mir AK, Spedding M (1986) Palmitoyl carnitine. A lipid metabolite produced in is- chaemia, activates Ca+ + channels in smooth muscle. Br J Pharmacol 88: 381 P

    Google Scholar 

  • Miura Y, Inui J, Imamura H (1978) Alpha-adrenoceptor-mediated restoration of calcium-dependent potential in the partially depolarized rabbit papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 301: 201–205

    Google Scholar 

  • Mugge A, Reupcke C, Scholz H ( 1985 a) Changes of myocardial alpha-1- and beta- adrenoceptor density in rats pretreated with propylthiouracil (PTU) or propranolol ( PROP ). Naunyn Schmiedebergs Arch Pharmacol 329: R52

    Google Scholar 

  • Mugge A, Reupcke C, Scholz H (1985 b) Increased myocardial alpha-1-adrenoceptor density in rats chronically treated with propranolol. Eur J Pharmacol 112: 249–252

    Google Scholar 

  • Murray PA, Vatner SF (1979) Alpha adrenoceptor attenuation of coronary vascular response to severe exercise in the conscious dog. Circ Res 45:654-660 Muscholl E (1973) Regulation of catecholamine release. The muscarinic inhibitory mechanism. In: Usdin E, Snyder SH (eds) Frontiers in catecholamine research. Pergamon, Oxford, 537–542.

    Google Scholar 

  • Nahorski SR, Barnett DB, Cheung YC (1985) Alpha-adrenoceptor-effector coupling: affinity states or heterogeneity of the alpha-2-adrenoceptor? Clin Sci 68: 39s–42s

    Google Scholar 

  • Nakadate T, Nakaki T, Muraki T, Kato R (1980) Adrenergic regulation of blood glucose levels—possible involvement of post-synaptic alpha-2-type adrenergic receptors regulating insulin release. J Pharmacol Exp Ther 215: 226–230

    Google Scholar 

  • Nakaki R, Nakadate T, Kato R (1980) Alpha-2-adrenoceptors modulating insulin release from isolated pancreatic islets. Naunyn Schmiedebergs Arch Pharmacol 313: 151–153

    Google Scholar 

  • Nakashima M, Maeda K, Sekiya A, Hagino Y (1971) Effect of hypothyroid status on myocardial responses to sympathomimetic drugs. Jpn J Pharmacol 21: 819–825

    PubMed  CAS  Google Scholar 

  • Nathan HJ, Feigl EO (1986) Adrenergic vasoconstriction lessens transmural steal dur-ing coronary hypoperfusion. Am J Physiol 250: H645–653.

    Google Scholar 

  • O’Brien JW, McGrath JC (1987) Blockade by nifedipine of responses to intravenous bolus injection or infusion of alpha-1- and alpha-2-adrenoceptor agonists in the pithed rat. Br J Pharmacol (in press)

    Google Scholar 

  • O’Brien JW, Flavahan NA, Grant TL, McGrath JC, Marshall RJ (1985) Influence of blood gases, Ca2+-entry blockade and angiotensin converting enzyme inhibition on pressor responses to alpha-adrenoceptor agonists: evidence in vivo for subtypes of response independent of receptor subtype? Clin Sci 68: 99s–104s

    PubMed  Google Scholar 

  • Ohguchi S, Sotobata I, Oguro K, Nakashima M (1984) Changes in the effects of clonidine on left atrium and hindlimb vasculature of rats in various thyroid states. A study of the responsiveness of alpha 2-adrenoceptors in the cardiovascular system. Jpn Heart J 25: 425–437

    Google Scholar 

  • Penny WJ, Culling W, Lewis MJ, Sheridan DJ (1985) Antiarrhythmic and electrophysiological effects of alpha adrenoceptor blockade during myocardial ischaemia and reperfusion in isolated guinea-pig heart. J Mol Cell Cardiol 17: 399–409

    PubMed  CAS  Google Scholar 

  • Rand MJ, McCulloch MW, Story DF (1982) Feedback modulation of noradrenergic transmission. Trends Pharmacol Sci 3: 8–11

    Google Scholar 

  • Reuter H (1974) Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J Physiol [Lond] 242: 429–451

    Google Scholar 

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301: 569–574

    PubMed  Google Scholar 

  • Robie NW (1984) Controversial evidence regarding the functional importance of presynaptic alpha receptors. Fed Proc 43: 1371–1374

    PubMed  Google Scholar 

  • Ruffolo RR Jr, Kopia GA (1986) Importance of receptor regulation in the pathophy-siology and therapy of congestive heart failure. Am J Med 80: 67–72

    Google Scholar 

  • Ruffolo RR Jr, Yaden EL, Waddell JE (1980) Receptor interactions of imidazolines. V. Clonidine differentiates postsynaptic alpha adrenergic receptor subtypes in tissues from the rat. J Pharmacol Exp Ther 213: 557–559

    Google Scholar 

  • Ruffolo RR Jr, Yaden EL, Waddell JE, Ward JS (1982) Receptor interactions of imidazolines. XI. Alpha-adrenergic and antihypertensive effects of clonidine and its methylene-bridged analog, St 1913. Pharmacology 25: 187–201

    Google Scholar 

  • Ruffolo RR Jr, Morgan EL, Messick K (1984) Possible relationship between receptor reserve and the differential antagonism of alpha-1- and alpha-2-adrenoceptor- mediated pressor responses by calcium channel antagonists in the pithed rat. J Pharmacol Exp Ther 230: 587–594

    Google Scholar 

  • Saeed M, Holtz J, Eisner D, Bassenge E (1985) Sympathetic control of myocardial oxygen balance in dogs mediated by activation of coronary vascular alpha-2 adrenoceptors. J Cardiovasc Pharmacol 7: 167–173

    Google Scholar 

  • Schmitt H (1977) The pharmacology of clonidine and related products. In: Gross F (ed) Antihypertensive agents. Springer, Berlin Heidelberg New York, pp 299–396 (Handbook of experimental pharmacology, vol 39 )

    Google Scholar 

  • Schmitt H, Laubie M (1983) Adrenoceptors and central cardiovascular regulation. In: Kunos G (ed) Adrenoceptors and catecholamine action, part B. Wiley, New York, 219–264

    Google Scholar 

  • Scholz H (1980) Effects of beta- and alpha-adrenoceptor activators and adrenergic transmitter releasing agents on the mechanical activity of the heart. In: Szekeres L (ed) Adrenergic activators and inhibitors. Springer, Berlin Heidelberg New York, pp 51–733 (Handbook of experimental pharmacology, vol 54/1)

    Google Scholar 

  • Schomig A, Dart AM, Dietz R, Kubler W, Mayer EC (1985) Paradoxical role of neuronal uptake for the locally mediated release of endogenous noradrenaline in the ischemic myocardium. J Cardiovasc Pharmacol 7: 540–544

    Google Scholar 

  • Schumann HJ (1980) Are there alpha-adrenoceptors in the mammalian heart? Trends Pharmacol Sci 1: 195–197

    Google Scholar 

  • Schumann HJ, Endoh M, Brodde OE (1975) The time course of the effects of beta- and alpha-adrenoceptor stimulation by isoprenaline and methoxamine on the contractile force and cAMP level of the isolated rabbit papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 289: 291–302

    Google Scholar 

  • Sekar MC, Roufogalis BD (1984) Comparison of muscarinic and alpha-adrenergic receptors in rat atria based on phosphoinositide turnover. Life Sci 35: 1527–1533

    Google Scholar 

  • Sheridan DM, Penkoske PA, Sobel BE, Corr PB (1980) Alpha adrenergic contributions of dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest 65: 161–171

    Google Scholar 

  • Sheridan DJ, Thomas P. Culling W, Collins P (1986) Antianginal and haemodynamic effects of alpha-1-adrenoceptor blockade. J Cardiovasc Pharmacol 8: S144–S150

    PubMed  Google Scholar 

  • Smith EF, Schaffran R, Kluth M (1983) Comparative effects of alpha-1- and alpha- 2-adrenoceptor blockers on catecholamine overflow and cardiac responses in sympathetically-stimulated rabbit hearts. Naunyn Schmiedebergs Arch Pharmacol 322: 294

    Google Scholar 

  • Spedding M, Mir AK (1987) Direct activation of Ca2+ channels by palmitoyl carnitine, a putative endogenous ligand. Br J Pharmacol 92: 457–468

    PubMed  CAS  Google Scholar 

  • Spedding M, Schine V, Schoeffter P, Miller RC (1987) Calcium channel activation does not increase the release of endothelial-derived relaxant factor ( EDRF) although tonic release of EDRF may modulate calcium channel activity in smooth muscle. J Cardiovasc Pharmacol 8: 1130-1137

    Google Scholar 

  • Spokas EG, Folco GC (1984) Intima-related vasodilatation of the perfused rat caudal artery. Eur J Pharmacol 100: 211–217

    Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77: 1–124

    PubMed  Google Scholar 

  • Starke K (1981) Alpha-adrenoceptor subclassification. Rev Physiol Biochem Pharmacol 88: 199–236

    PubMed  Google Scholar 

  • Steinberg SF, Drugge ED, Bilezikian JP, Robinson RB (1985) Acquisition by inner-vated cardiac myocytes of a pertussis toxin-specific regulatory protein linked to the alpha-1 receptor. Science 230: 186–188

    PubMed  CAS  Google Scholar 

  • Stjarne L (1985) Scope and mechanisms of control of stimulus-secretion coupling in single varicosities of sympathetic nerves. Clin Sci 68: 77s–81s

    PubMed  Google Scholar 

  • Story DF, Standford-Starr CA, Rand MJ (1985) Evidence for the involvement of alpha-1 adrenoceptors in negative feedback regulation of noradrenergic transmitter release in rat atria. Clin Sci 68:llls–115s

    Google Scholar 

  • Timmermans PBMWM, Wilffert B, Kalkman HO, Thoolen MJMC, Van Meel JCA, De Jonge A, Van Zwieten PA (1982) Selective inhibition of alpha-2-adrenocep- tor-mediated vasoconstriction in vivo by captopril and MK-421. Br J Pharmacol 75: 135 P

    Google Scholar 

  • Toda N (1986) Alpha-adrenoceptor subtypes and diltiazem actions in isolated human coronary arteries. Am J Physiol 250: H718–724

    PubMed  CAS  Google Scholar 

  • Tsien RW (1977) Cyclic AMP and contractile activity in heart. Adv Cyclic Nucleotide Res 8: 363–420

    PubMed  Google Scholar 

  • Vanhoutte PM (1986) Could the absence or malfunction of vascular endothelium precipitate the occurence of vasospasm? J Mol Cell Cardiol 18: 679–689

    PubMed  CAS  Google Scholar 

  • Van Meel JCA, De Jonge A, Kalkman HO, Wilffert B, Timmermans PBMWM, Van Zwieten PA (1981) Vascular smooth muscle contraction initiated by postsynaptic alpha-2-adrenoceptor activation induced by an influx of extracellular calcium. Eur J Pharmacol 69: 205–208

    Google Scholar 

  • Vatner SF (1983) Alpha-adrenergic regulation of the coronary circulation in the conscious dog. Am J Cardiol 52: 15A–21A

    PubMed  Google Scholar 

  • Vatner SF (1984) Alpha-adrenergic tone in the coronary circulation of the conscious dog. Fed Proc 43: 2867–2872

    PubMed  Google Scholar 

  • Vatner SF, Pagani M, Manders WT, Pasipoularides AD (1980) Alpha adrenergic vasoconstriction and nitroglycerin vasodilation of large coronary arteries in the conscious dog. J Clin Invest 65: 5–14

    Google Scholar 

  • Vaughan Williams EM (1985) Cardiac electrophysiological effects of selective adreno-ceptor stimulation and their possible roles in arrhythmias. J Cardiovasc Pharmacol 7: S61–S64

    PubMed  Google Scholar 

  • Waterfall JF, Rhodes KF, Lattimer N (1985) Studies of alpha-2-adrenoceptor antagonist potency in vitro: comparisons in tissues from rats, rabbits, dogs and humans. Clin Sci 68: 21s–24s

    PubMed  CAS  Google Scholar 

  • Weitzell R, Tanaka T, Starke K (1979) Pre- and postsynaptic effects of yohimbine stereoisomers on noradrenergic transmission in the pulmonary artery of the rabbit. Naunyn Schmiedebergs Arch Pharmacol 308: 127–136

    PubMed  CAS  Google Scholar 

  • Wetzel GT, Goldstein D, Brown JH (1985) Acetylcholine release from rat atria can be regulated through an alpha-1-adrenergic receptor. Circ Res 56: 763–766

    Google Scholar 

  • Williams RS, Schaible TF, Scheuer J, Kennedy R (1983) Effects of experimental diabetes on adrenergic and cholinergic receptors of rat myocardium. Diabetes 32: 881–886

    Google Scholar 

  • Witkowski FX, Corr PB (1984) Mechanisms responsible for arrhythmias associated with reperfusion of ischemic myocardium. Ann NY Acad Sci 427: 187–198

    PubMed  CAS  Google Scholar 

  • Woodman OL, Vatner SF (1986) Noradrenaline-induced coronary vasoconstriction is mediated by both alpha-1- and alpha-2-adrenoceptors in conscious dogs. J Mol Cell Cardiol 18: 155 P

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McGrath, J.C. (1989). Alpha-Adrenoceptors in Arrhythmogenesis. In: Vaughan Williams, E.M. (eds) Antiarrhythmic Drugs. Handbook of Experimental Pharmacology, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73666-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73666-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73668-1

  • Online ISBN: 978-3-642-73666-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics