Skip to main content

Cardiac Electrophysiology

  • Chapter
Antiarrhythmic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 89))

Abstract

The heart may be considered simply as an anatomical network of electrically interconnected cells, through which waves of depolarizing and repolarizing current travel from the sinus node in an orderly and appropriate manner to ensure that all parts contract at the correct time. Clinical electrophysiologists can indentify disorders of rhythm from ECG records and invasive studies with intracardiac recording and stimulating electrodes (Chap. 4). Such investigations, however, tell us nothing of the nature of the ionic currents flowing in and out of individual cells. The heart is regarded merely as a wiring diagram. Alternatively an attempt may be made to identify in vitro the sources of current in terms of concentration differences of ions inside and outside the cells, and to examine how individual currents are switched on and off. Such studies ignore the anatomy of the heart and the vitally important role of the intercellular connections, the “gap” junctions, the number and distribution of which determine the pathway of conduction. In this chapter both approaches to cardiac electrophysiology will be discussed in the hope that a coherent pattern may emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen DG, Eisner DA, Pirolo JS, Smith GL (1985) The relationship between intracellular calcium and contraction in calcium-overloaded ferret papillary muscles. J Physiol (Lond) 364: 169–182

    CAS  Google Scholar 

  • Bassingthwaite JB, Fry CH, McGuigan JAS (1976) Relationship between internal calcium and outward current in mammalian ventricular muscle: a mechanism for the control of action potential duration? J Physiol (Lond) 262: 15–37

    Google Scholar 

  • Bean BP (1985) Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol 86: 1–30

    Article  PubMed  CAS  Google Scholar 

  • Bleeker WK, Mackay JC, Masson-Pevet M, Bouman LN, Becker AE (1980) Functional and morphological organization of the rabbit sinus node. Circ Res 46: 11–22

    Google Scholar 

  • Brown HF (1982) Electrophysiology of the sinus node. Physiol Rev 62:505-530 Brown HF, DiFrancesco D, Noble SJ (1979) How does adrenaline accelerate the heart? Nature (Lond) 280: 235–236

    Article  Google Scholar 

  • Cannell MB, Lederer WJ (1986) The arrhythmogenic current Iti in the absence of electrogenic sodium-calcium exchange in sheep cardiac Purkinje fibres. J Physiol (Lond) 374: 201–220

    CAS  Google Scholar 

  • Carmeliet E (1961) Chloride ions and the membrane potential of Purkinje fibres. J Physiol (Lond) 156: 375–388

    CAS  Google Scholar 

  • Carmeliet E, Verdonck F (1977) Reduction of potassium permeability by chloride substitution in cardiac cells. J Physiol (London) 265: 193–206

    Google Scholar 

  • Chambers Encyclopedia (1888) Atlantic telegraph. Lippincott, Philadelphia, vol 1; p 545

    Google Scholar 

  • Colquhoun D, Neher E, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294: 752–754

    Article  PubMed  CAS  Google Scholar 

  • Coraboeuf E, Deroubaix E (1978) Shortening effect of tetrodotoxin on action potentials of the conducting system in the dog heart. J Physiol (Lond) 280: 24 P

    Google Scholar 

  • Dahl G, Isenberg G (1980) Decoupling of heart muscle cells: correlations with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J Membr Biol 53: 63–75

    Article  Google Scholar 

  • De Mello WC (1963) Role of chloride ions in cardiac action and pacemaker potentials. Am J Physiol 205: 567–575

    Google Scholar 

  • DiFrancesco D (1981) A new interpretation of the pacemaker current in Purkinje fibres. J Physiol (Lond) 314: 359–376

    Google Scholar 

  • Dudel J, Peper K, Rudel R, Trautwein W (1967) The dynamic chloride component of membrane current in Purkinje fibres. Pflugers Arch 295: 197–212

    Article  Google Scholar 

  • Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC (1970) Total excitation of the isolated human heart. Circulation 41: 899–912

    PubMed  CAS  Google Scholar 

  • Eisner DA, Valdeolmillos M (1986) Measurement of intracellular calcium during the development and relaxation of tonic tension in sheep Purkinje fibres. J Physiol (Lond) 375: 269–281

    Google Scholar 

  • Fabiato A, Fabiato F (1979) Calcium and cardiac excitation-contraction coupling. Annu Rev Physiol 41: 473–484

    Article  PubMed  CAS  Google Scholar 

  • Fozzard HA, Hiraoka M (1973) The positive dynamic current and its inactivation properties in cardiac Purkinje fibres. J Physiol (Lond) 234: 569–586

    Google Scholar 

  • Giebisch G, Weidmann S (1971) Membrane currents in mammalian ventricular heart muscle fibers using a voltage clamp technique. J Gen Physiol 57: 290–296

    Article  Google Scholar 

  • Gomperts B (1977) The plasma membrane. Academic, New York

    Google Scholar 

  • Gros D, Lee I, Challice CE (1982) Formation and growth of myocardial gap junctions: in vivo and in vitro studies. In: Bouman LN, Jongsma HJ(eds) Cardiac rate and rhythm. Nijhoff, The Hague, pp 243–264

    Google Scholar 

  • Hess P, Lansman JB, Tsien R (1986) Calcium channel selectivity for divalent and monovalent cations. Voltage- and time-dependence of single channel current in guinea-pig ventricular heart cells. J Gen Physiol 88: 293–319

    Google Scholar 

  • Hodgkin AL (1937 a) Evidence for electrical transmission in nerve. Part 1. J Physiol (Lond) 90: 183–210

    Google Scholar 

  • Hodgkin AL (1937b) Evidence for electrical transmission in nerve. Part 2. J Physiol (Lond) 90: 211–232

    CAS  Google Scholar 

  • Hodgkin AL, Horowitz P (1959) The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol (Lond) 148: 127–160

    CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1939) Action potentials recorded from inside a nerve fibre. Nature 144: 710

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1945) Resting and action potentials in single nerve fibres. J Physiol (Lond) 104: 195

    Google Scholar 

  • Hodgkin Al, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117: 500–544

    Google Scholar 

  • Hope RR, Scherlag BJ, El-Sharif N, Lazzard R (1976) Hierarchy of ventricular pace-makers. Circ Res 39: 883–888

    PubMed  CAS  Google Scholar 

  • Isenberg G (1977) Cardiac Purkinje fibres: [Ca]i controls steady state potassium conductance. Pflugers Arch 371: 71–76

    Article  PubMed  Google Scholar 

  • James TN (1963) The connecting pathways between the sinus node and A-V node and between the right and left atrium in the human heart. Am Heart J 66: 498–508

    Article  PubMed  Google Scholar 

  • James TN (1977) The sinus node. Am J Cardiol 40: 965–986

    Article  Google Scholar 

  • James TN, Sherf L, Fine G, Morales AR (1966) Comparative ultrastructure of the si-nus node in man and dog. Circulation 34: 139–163

    PubMed  CAS  Google Scholar 

  • Janse MJ, Anderson RA (1974) Specialized internodal atrial pathways: fact or fiction? Eur J Cardiol 2: 117–136

    Google Scholar 

  • Johnson EA, Lieberman M (1971) Heart: excitation and contraction. Annu Rev Physiol 33: 479–532

    Article  PubMed  CAS  Google Scholar 

  • Kass RS (1982) Delayed rectification is not a calcium activated current in Purkinje fibers (Abstr). Biophys J 37: 342

    Google Scholar 

  • Kenyon JL, Gibbons WR (1979 a) Influence of chloride, potassium and tetraethylam- monium on the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73: 117–138

    Google Scholar 

  • Kenyon JL, Gibbons WR (1979b) 4-Aminopyridine and the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73: 139–157

    Google Scholar 

  • Kohlhardt M, Figulla H-R, Tripathi O (1976) The slow membrane channel as the predominant mediator of the excitation process of the sinoatrial pacemaker cell. Basic Res Cardiol 71: 17–26

    Article  Google Scholar 

  • Kreitner D (1978) Effects of polarization and of inhibitors of ionic conductances on the action potentials of nodal and perinodal fibers in rabbit sinoatrial node. In: Bonke FIM(ed) The sinus node. Nijhoff, The Hague, pp 270–278

    Google Scholar 

  • Krikler DM (1987) Jubilee editorial: electrocardiography then and now: what next? Br Heart J 57: 113–117

    Article  PubMed  Google Scholar 

  • Krinsky VI (1981) Mathematical models of cardiac arrhythmias (spiral waves). In: Sze- keres L(ed) Pharmacology of antiarrhythmic agents. Pergamon, Oxford, pp 105–124

    Google Scholar 

  • Lee KS, Noble D, Lee E, Spindler AJ (1984) A new calcium current underlying the plateau of the cardiac action potential. Proc Soc Lond [Biol] 223: 5–48

    Google Scholar 

  • Lee KS, Marban E, Tsien RW (1985) Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol (Lond) 364: 395–411

    Google Scholar 

  • Legato MJ (1973) Ultrastructure of the atrial, ventricular and Purkinje cell, with special reference to the genesis of arrhythmias. Circulation 47: 178–189

    PubMed  Google Scholar 

  • Liddell EGT (1960) The discovery of reflexes. University Press, Oxford Masson-Pevet M, Bleeker WK, Gros D (1979) The plasma membrane of leading pacemaker cells in the rabbit sinus node. Circ Res 45: 621–629

    Google Scholar 

  • Masson-Pévet M, Bleeker WK, Besselsen E, Mackay AJC, Jongsma HJ, Bouman LN (1982) On the ultrastructural identification of pacemaker cell types within the sinus node. In: Bouman LN, Jongsma HJ(eds) Cardiac rate and rhythm. Nijhoff, The Hague, pp 19–34

    Google Scholar 

  • McAllister RE, Noble D, Tsien RW (1975) Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol (Lond) 251: 1–60

    CAS  Google Scholar 

  • McDonald TF, Trautwein W (1978 a) Membrane currents in cat myocardium: separation of inward and outward components. J Physiol (Lond) 274: 193–216

    Google Scholar 

  • McDonald TF, Trautwein W (1978 b) The potassium current underlying delayed rectification in cat ventricular muscle. J Physiol (Lond) 274: 217–246

    Google Scholar 

  • Mullins LJ (1981) Ion transport in the heart. Raven, New York Nelson CV, Geselowitz DB ( 1976 ) The theoretical basis of electrocardiography. Clarendon, Oxford

    Google Scholar 

  • Noble D (1962) A modification of the Hodgkin-Huxley equations applicable to Pur-kinje fibre action and pacemaker potentials. J Physiol (Lond) 160: 317–352

    CAS  Google Scholar 

  • Noble D (1975/1979) The initiation of the heartbeat. Oxford University Press, Oxford Noble D, Tsien RW (1969 a) Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol (Lond) 200: 205–232

    Google Scholar 

  • Noble D, Tsien RW (1969b) Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current. J Physiol (Lond) 200: 233–254

    Google Scholar 

  • Noma A, Irisawa H (1974) Electrogenic pump in rabbit sinoatrial node cell. Pflugers Arch 357: 177–182

    Article  Google Scholar 

  • Noma A, Tohru S (1985) Properties of adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol (Lond) 363: 463–480

    CAS  Google Scholar 

  • Noma A, Yanagihara K, Irisawa H (1977) Inward membrane currents in the rabbit sinoatrial node cell. Pflugers Arch 372: 43–51

    Article  Google Scholar 

  • Philipson KD, Bers DM, Langer GA (1981) The role of sarcolemmal Ca2+ in myocardial contactility. In: Grinnell AD, Brazier MAB(eds) The regulation of muscle contraction. Excitation-contraction coupling. Academic, New York, pp 215–226

    Google Scholar 

  • Reuter H (1967) The dependence of slow inward current in Purkinje fibres on the extracellular calcium concentration. J Physiol (Lond) 192: 479–492

    Google Scholar 

  • Rushton WAH (1951) A theory of the effects of fibre size in medullated nerve. J Physiol (Lond) 115: 101–122

    Google Scholar 

  • Seyama I (1977) The effect of Na, K and CI ions on the resting membrane potential of sinoatrial node cell of the rabbit. Jpn J Physiol 27: 577–588

    Article  PubMed  Google Scholar 

  • Seyama I (1979) Characteristics of the anion channel in the sinoatrial node of the rabbit. J Physiol (Lond) 294: 447–460

    Google Scholar 

  • Stampfli R (1954) Saltatory conduction in nerve. Physiol Rev 34: 101–112

    PubMed  Google Scholar 

  • Taccardi B, de Ambroggi L (1975) Le elektromappe cardiache In: Anguissola AB, Puddu V(eds) Cardiologia oggi. Edizioni Medico Scientifice, Torino, pp 361–381

    Google Scholar 

  • Vaughan Williams EM (1958) The mode of action of quinidine on isolated rabbit atria interpreted from intracellular potential records. Br J Pharmacol 13: 276–287

    Google Scholar 

  • Vaughan Williams EM (1959) The effect of changes in extracellular potassium concentration on the intracellular potentials of isolated rabbit atria. J Physiol (Lond) 146: 411–427

    Google Scholar 

  • Vaughan Williams EM (1987) Is phosphodiesterase inhibition arrhythmogenic? Elec-trophysiological effects in pithed rats and in normoxic and hypoxic rabbit atria of enoximone, a new cardiotonic agent. J Clin Pharmacol, 27: 91–100

    PubMed  CAS  Google Scholar 

  • Vleugels A, Carmeliet E (1976) Hypoxia increases potassium efflux from mammalian myocardium. Experientia 32: 483 - 484

    Article  Google Scholar 

  • Weidmann S (1955) The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol (Lond) 127: 213–224

    CAS  Google Scholar 

  • Yamagishi S, Sano J (1966) Effect of tetrodotoxin on the pacemaker action potential of the sinus node. Proc Jpn Acad 42: 1194–1196

    Google Scholar 

  • Yanagihara K, Irisawa H (1980) Inward current activated during hyperpolarization in the rabbit sinoatrial node. Pflugers Arch 385: 11–19

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vaughan Williams, E.M. (1989). Cardiac Electrophysiology. In: Vaughan Williams, E.M. (eds) Antiarrhythmic Drugs. Handbook of Experimental Pharmacology, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73666-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73666-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73668-1

  • Online ISBN: 978-3-642-73666-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics