Influence of Antibiotic Therapy of Mice on the Humoral Immune Response Against Sheep Erythrocytes

  • K.-H. Büscher
  • G. Schwarz
  • B. Andres
  • S. Wendt
  • W. Opferkuch
Conference paper


Antibiotics may alter the host-parasite relationship by modification of bacterial properties, e.g., expression of capsular polysaccharides or other surface constituents [16–25] or liberation of toxins [8] of lipopolysachharide, etc. On the other hand, they may exert a direct influence on immunocompetent cells [2, 6, 13, 17, 20]. Only limited information is available on the influence of antibiotic treatment in vivo on parameters of the immune system [1, 2, 4–6, 10, 21–24]. Furthermore, the data obtained by different authors are controversial and hardly comparable. Whereas Gillissen [4, 5] described an augmenting effect of 1-day treament of mice with different β-laetam antibiotics on the primary humoral immune response against sheep erythrocytes, Roszkowski et al. [22, 23] found suppressive effects after 7 days of treatment. In this case mezlocillin and cefotaxime showed the most pronounced suppression of the humoral and cellular immune response. The difference between these studies might be due to differences induced by a prolonged action of antibiotics on immunocompetent cells, to differences in the action of antibiotics on the intestinal flora [7, 26, 27], to different stress situations of the mice [11, 15], induced for example by the different number of injections, or to different housing conditions [3, 7, 9]. The first hypothesis seems to be unlikely, because Büscher et al. [1] did not find a suppressive effect of 7-day treatment of Balb/c mice with mezlocillin.


Antibiotic Therapy Humoral Immune Response Superoxide Production Intestinal Flora Phorbol Myristate Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Büscher KH, Andres B, Wendt S, Opferkuch W (1986) Einfluß von Mezlocillin auf die humorale Immunantwort in vivo. FAC 5–3:443Google Scholar
  2. 2.
    Finch R (1980) Immunomodulating effects of antimicrobial agents. J Antimicrob Chemother 6:691PubMedCrossRefGoogle Scholar
  3. 3.
    Fortmeyer HP (1982) The influence of exogeneous factors such as maintenance and nutrition on the course and results of animal experiments. In: Bartosek I et al. (eds) Animals in toxico-logical research. Raven, New York, pp 13–32Google Scholar
  4. 4.
    Gillissen GJ (1982) Influence of cephalosporins on humoral immune response. In: Adam D, Hahn H, Opferkuch W (eds) The influence of antibiotics on the host-parasite relationship II. Springer, Berlin Heidelberg New York, pp 5–11Google Scholar
  5. 5.
    Gillissen G (1985) Antimicrobial chemotherapy in immunocompromised host. Cancer Treat Symp 1:37Google Scholar
  6. 6.
    Hauser W, Remington J (1982) Effect of antibiotics on the immune response. Am J Med 72:711PubMedCrossRefGoogle Scholar
  7. 7.
    Hotzel D (1967) Contribution of the intestinal microflora to the nutrition of the host. Vitam Horm 24:115CrossRefGoogle Scholar
  8. 8.
    Karch H, Goroncy-Bermes P, Opferkuch W, Kroll HP, O’Brien A (1985) Subinhibitory concentrations of antibiotics modulate amount of Shiga-like toxin produced by Escherichia coli. In: Adam D, Hahn H, Opferkuch W (eds) The influence of antibiotics on the host-parasite relationship II. Springer, Berlin Heidelberg New York, pp 239–245CrossRefGoogle Scholar
  9. 9.
    Kollmorgen M, Longley R (1982) Dietary fat stimulates tumor growth and inhibits immune responses. 1st conference modulation and mediation of cancer by vitamins, Tucson, 1982Google Scholar
  10. 10.
    Limbert M, Bartlett RR, Dickneite G, Kiesel N, Schorlemmer HU, Seibert G, Winkler I, Schrinner E (1984) Cefodizime, an aminothiazolyl cephalosporin. J Antibiot (Tokyo) 37:1719Google Scholar
  11. 11.
    Marx JL (1982) The immune system “belongs in the body”. Pervasive anatomical and biochemical links between the immune and nervous systems help explain how mood might influence disease susceptibility. Science 227:1190CrossRefGoogle Scholar
  12. 12.
    McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049PubMedGoogle Scholar
  13. 13.
    Milatovic D (1983) Antibiotics and phagocytosis. Eur J Microbiol 2:414CrossRefGoogle Scholar
  14. 14.
    Mishell BB, Shiggi SM (1980) Selected methods in cellular immunology. WH Freeman, San FranciscoGoogle Scholar
  15. 15.
    Monjau AA, Collector MI (1977) Stress induced modulation of the immune response. Science 196:307CrossRefGoogle Scholar
  16. 16.
    Pawelzik M, Schumann U, Wiemer C (1985) The effect of sublethal concentrations of antibiotics on the host-parasite relationship. Zbl Bakt Hyg [A] Suppl 13:165Google Scholar
  17. 17.
    Opferkuch W, Pawelzik M (1986) Der Einfluß von Antibiotika auf die Keim-Phagozyten-Interaktion. FAC 5–3:431Google Scholar
  18. 18.
    Opferkuch W, Büscher KH, Leying H, Pawelzik M, Suerbaum S (1987 a) The influence of subinhibitory concentrations of antibiotics on the bacterial surface with respect to host defense mechanisms. In: Szentivanyi A, Friedman H, Gillissen G (eds) Antibiosis and host immunity. Plenum New York, pp 15–25CrossRefGoogle Scholar
  19. 19.
    Opferkuch W, Büscher KH, Leying H, Klimetzek V (1987 b) Interaction of Escherichia coli and macrophages: alteration by treatment of bacteria with β-lactam antibiotics. Zbl Bakt Hyg [A] 266:116–126Google Scholar
  20. 20.
    Pawelzik M, Opferkuch W (1986) The influence of antibiotics on the host-parasite relationship. Clin Immunol Newsletter 7:81CrossRefGoogle Scholar
  21. 21.
    Roszkowski K, Ko HL, Roszkowski W, Jeljaszewicz J, Pulverer G (1985) Effect of some antimicrobial antibiotics on sarcoma L-1 tumor growth in mice. Zbl Bakt Hyg [A] Suppl 13:199Google Scholar
  22. 22.
    Roszkowski W, Ko HL, Roszkowski K, Jeljaszewicz J, Pulverer G (1985) Effect of selected antibiotics on the cellular and humoral immune response in mice. Zbl Bakt Hyg [A] Suppl 13:59Google Scholar
  23. 23.
    Roszkowski W, Ko HL, Roszkowski K, Jeljaszewicz J, Pulverer G (1985) Antibiotics and immunomodulation: effects of cefotaxime, amikacin, mezlocillin, piperacillin and clindamycin. Med Microbiol Immunol (Berl) 173:279CrossRefGoogle Scholar
  24. 24.
    Roszkowski W, Ko HL, Roszkowski K, Ciborowski P, Jeljaszewicz J, Pulverer G (1986) Effects of ciprofloxacin on the humoral and cellular immune responses in Balb/c mice. Zbl Bakt Hyg [A] 262:396Google Scholar
  25. 25.
    Suerbaum S, Leying H, Kroll HP, Gmeiner J, Opferkuch W (1987) Influences of β-lactam antibiotics and ciprofloxacin on the cell envelope of Escherichia coli. Antimicrob Agents Chemother 31:1106PubMedGoogle Scholar
  26. 26.
    Van der Waaij D (1969) Similarities between germfree mice and mice with an antibiotic decontaminated tract. In: Miraud EA, Bach N (eds) Germ-free biology, Plenum, New York, p 181Google Scholar
  27. 27.
    Van der Waaij D, Heidt PJ (1977) Intestinal bacterial ecology in relation to immunological factors and other defense mechanisms. In: Hambraens L, Hansen LA, McFarland H (eds) Food and immunology. Almquist and Wiskell, Stockholm, p 183Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • K.-H. Büscher
    • 1
  • G. Schwarz
    • 2
  • B. Andres
    • 2
  • S. Wendt
    • 2
  • W. Opferkuch
    • 2
  1. 1.E. Merck, Fo Diag KC, U 26Darmstadt 1Federal Republic of Germany
  2. 2.Department of Medical Microbiology and ImmunologyRuhr-Universität BochumBochumFederal Republic of Germany

Personalised recommendations