Saponaria officinalis L.: In Vitro Culture and the Production of Triterpenoidal Saponins

  • M. Henry
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 7)


There are very few studies on the production of triterpenoids and their saponins by in vitro plant culture (Staba 1980). These products now enjoy growing interest since their chemical extraction and purification have become easier and their structural identity has been made possible by methods like RMN-13C or Fab-MS (Oshimata et al. 1984; Higuchi et al. 1987). Among the plants producing triterpenoidal saponins, some contain great amounts of very polar saponins, essentially in the rhizome and the roots (Saponaria officinalis L., Gypsophila sp., Caryophyllaceae) or in the bark (Quillaja saponaria Mol., Quillaja smegmadermos D.C., Rosaceae). These saponins are among the biggest with nine to ten oses bound to a pentacyclic triterpenoid acid. Their amphiphilic structure confers to them some well-known properties such as detergent, emulsive, hemolytic and toxic substances. Some of them are still largely used as shampoo (Quillaja saponins) or to make photographic emulsion (saponins of S. officinalis, fuller’s herb or of Gypsophila sp., soapwort) (Tschesche and Wulff 1973). First results showed us the presence of these compounds in plant cell culture in vitro, so we have tried to investigate their production and metabolism using 5. officinalis cells to elucidate their role in the cell.


Betulinic Acid Triterpenoidal Saponin Saponin Content Total Saponin Pentacyclic Triterpenoids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler C, Hiller K (1985) Bisdesmosidische Triterpensaponine. Pharmazie 40: 676–693.Google Scholar
  2. Andrzejewska E (1975) Determination of saponins in certain food products. Roc Panstw Zakl Hig 26: 87–92.Google Scholar
  3. Avezou P (1942) Contribution à l’étude de la Saponaire officinale en pharmacie. Thèse d’Etat Pharm, Univ Montpellier.Google Scholar
  4. Boiteau P, Pasich B, Rakoto Ratsimamanga A (1964) Les triterpénoides en physiologie végétale et animale. Gauthier-Villars, Paris, p 304.Google Scholar
  5. Bukharov VG, Shcherbak SP (1969) Triterpene glycosides from Saponaria officinalis. Khim Prir Soedin 5: 389–394 (in Russian).Google Scholar
  6. Caputo O, Delprino L, Viola F, Caramiello R, Balliano G (1983) Biosynthesis of sterols and triterpenoids in tissue culture of Cucurbita maxima. Planta Med 49: 176–180.PubMedCrossRefGoogle Scholar
  7. Chantalat-Dublanche I (1985) Étude de la composition stérolique de cellules du Saponaria officinalis L. cultivées in vitro: biosynthèse et bioproduction. Thèse 3. Cycle, Univ Toulouse.Google Scholar
  8. Chirva VY, Kintya PK (1969) Structure of saponasid A. Khim Prir Soedin 5: 188 (in Russian).Google Scholar
  9. Chirva VY, Kintya PK (1970) Structure of saponasid D. Khim Prir Soedin 6: 214–218 (in Russian).Google Scholar
  10. Duperon R, Thiersault M, Duperon P (1984) High level of glycosylated sterols in species of Solanum and sterol changes during the development of the tomato. Phytochemistry 23: 743–746.CrossRefGoogle Scholar
  11. Furuya T, Yoshikawa T, Ishii T, Kajii K (1983) Regulation of saponin production in callus cultures of Panax ginseng. Planta Med 47: 200–204.PubMedCrossRefGoogle Scholar
  12. Henry M, Chantalat-Dublanche I (1985) Isolation of spinasterol and its glucoside from cell suspension cultures of Saponaria officinalis: 13C-NMR spectra data and batch culture production. Planta Med 322-325.Google Scholar
  13. Henry M, Guignard JL (1982) Production d’acide quillayique chez une suspension cellulaire de Saponaria officinalis. Physiol Veg 20: 201–209.Google Scholar
  14. Henry M, Pauthe D (1985) Recherche de l’exploitation des capacités de glycosylation d’une suspension de Saponaria officinale, étude de la toxicité de la glucurono-gypsogénine. In: Terre J, Petiard V eds Aspects industriels des cultures cellulaires d’origine animale et végétale. 10. Coll Soc Fr Microbiol, 7–8 mars 1985, Lyon, 379–382.Google Scholar
  15. Henry M, Brion JD, Guignard JL (1981) A propos des saponines de la Saponaire officinale. Plant Med Phytol 15: 192–200.Google Scholar
  16. Henshaw GG, Jha KK, Mehta AR, Shakeshaft DJ, Street ME (1966) Studies on the growth in culture of plant cells. 1. Growth patterns in batch propagated suspension cultures. J Exp Bot 17: 362–377.CrossRefGoogle Scholar
  17. Higuchi R, Tokimitsu Y, Fujioka T, Komori T, Kawasaki T, Oaekenful DG (1987) Structure of desacylsaponins obtained from the bark of Quillaja saponaria. Phytochemistry 26: 229–235.CrossRefGoogle Scholar
  18. Itoh T, Tamura T, Matsumoto T (1974) Sterols, methylsterols and triterpen alcohols in three Theaceae and other vegetable oils. Lipids 9: 173–184.CrossRefGoogle Scholar
  19. Kamisako W, Morimoto K, Makino I, Isoi K (1984) Changes in triterpenoid content during the growth cycle of cultured plant cells. Plant Cell Physiol 25: 1571–1574.Google Scholar
  20. Kon GAR, Soper HR (1940) Sapogenins, pt 8. The sapogenin of fuller’s herb. J Chem Soc 34: 617–620.CrossRefGoogle Scholar
  21. Kubota T, Kitatani H, Hinoh H (1969) Isomerisation of quillaic acid and echinocystic acid with hydrochloric acid. Tetrahedron Lett 10: 771–774.CrossRefGoogle Scholar
  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.CrossRefGoogle Scholar
  23. Nitsch JP, Nitsch C (1956) Auxin-dependent growth of excised Helianthus tuberosus tissues. Am J Bot 43: 839–851.CrossRefGoogle Scholar
  24. Oshimata Y, Ohsawa T, Oikawa K, Konno C, Hikino H (1984) Structures of Dianosides A and B, analgesic principles of Dianthus superbus var. longicalycinus herbs. Planta Med:40-43.Google Scholar
  25. Pasich B (1961) Triterpene compounds in plant materials. IV. Chromatographic characterization of the more important saponins in medicinal plants. Diss Pharm 13: 1–10.Google Scholar
  26. Ruzicka L, Giacomello G (1936) Polyterpene und Polyterpenoide CVII. Überführung von Gypsogenin (Albasapogenin) in Oleanol Säure. Helv Chim Acta 19: 1136–1140.CrossRefGoogle Scholar
  27. Ruzicka L, Giacomello G (1937) Polyterpene und Polyterpenoide CX. Überführung des Gypsogenins in Hederagenin. Helv Chim Acta 20: 299–309.CrossRefGoogle Scholar
  28. Staba EJ (ed) (1980) Secondary metabolism and biotransformation. In: Plant tissue as a source of biochemicals. CRC, Boca Raton, Fla, p 73.Google Scholar
  29. Tschesche R, Wulff G (1973) Chemie und Biologie der Saponine. Fortschr Chem Org Naturst 30: 461–606.PubMedGoogle Scholar
  30. Vigneau C (1985) Plantes médicinales. Thérapeutique. Toxicité. Masson, Paris, p 127.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • M. Henry
    • 1
  1. 1.Faculté des Sciences Pharmaceutiques BotaniqueUniversité Paul SabatierToulouseFrance

Personalised recommendations