Pimpinella anisum L. (Anise): Cell Culture, Somatic Embryogenesis, and the Production of Anise Oil

  • D. Ernst
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 7)

Abstract

Anise originated in the eastern Mediterranean region and is native to Asia Minor, Greece and Egypt. Principal anise-growing regions are Spain, the Soviet Union, France and North Africa as well as some parts of Germany (Deutschmann et al. 1979; Wagner 1980). Moreover, anise is commercially cultivated in Chile, China and the USA (Embong et al. 1977). The plant belongs to the UmbeUiferae family, has a distinct spicy-aromatic (anise-like) smell, and an aromatic-sweetish taste, with greyish-green upside-down pear-shaped, and about 2-mm-long schizocarps of the 1-year-old herb-like plant which may grow up to 50 cm (Wagner 1980). The plant has fine fusiform roots, the ribbed stem is branched and has pubiscent leaves. The lower vegetative leaves are roundish-reniform, whereas the upper vegetative leaves consist of narrow-leaved pinnas. The blossom is an umbel with filamentous involucral bracts and white and short petals (Deutschmann et al. 1979). As a medicinal herb and aromatic plant, anise is one of the oldest cultigens. Hippocrates used anise for the treatment of jaundice and, in the Middle Ages, it was taken as a medicine for cough and cancer, as well as for cases of snake and scorpion bites, mental diseases and epilepsy; it was even used as a diuretic. The first legal certification of anise oil dates back to the beginning of the 16th century (Gildemeister and Hoffmann 1956). The annual world production of anise oil, including coriander oil, amounts to as much as 500 tons (Gildemeister and Hoffmann 1956, 1966). Anise fruit and its essential oil are used as a spicy seasoning (in biscuits, Vinschgl = a “long-time bread” from South Tyrol and preserved fruits), as a flavour additive in the field of oral hygiene (in toothpastes and gargles), in the confectionery industry and for the production of alcoholic beverages, such as herb liqueur or anise brandy (Wagner 1980; Zepernick et al. 1984). In medicine, the carminative, spasmolytic and expectorant effects of the drug and oil are of interest (Weiss 1974; Wagner 1980; Zepernick et al. 1984). Moreover, the plant’s importance is shown nowadays in its adaptation into essential European pharmacopeias: DAB 8 (FRG), DAB 7 (GDR), ÖAB 9 (Austria), Helv VI (Switzerland) and Ph. Eur. III (Europe).

Keywords

Carotenoid Egypt Odour Cough Isoprenoids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert-Puleo M (1980) Fennel and anise as estrogenic agents. J Ethnopharmacol 2: 337–344.PubMedCrossRefGoogle Scholar
  2. Becker H (1970a) Vergleichende Untersuchungen über die Zusammensetzung der ätherischen Öle der Vegetationsorgane von Pimpinella anisum. Planta Med 18: 336–346.CrossRefGoogle Scholar
  3. Becker H (1970b) Studies on the formation of volatile substances in plant tissue cultures. Biochem Physiol Pflanzen 161: 425–441.Google Scholar
  4. Becker H (1971) Vergleichende Untersuchungen über die Zusammensetzung der ätherischen Öle verschiedener Handelsfrüchte von Pimpinella anisum L. Dtsch Apotheker Z 111: 41–43.Google Scholar
  5. Becker H, Reichling J, Bisson W, Herold S (1984) Two-phase culture — A new method to yield lipophilic secondary products from plant suspension cultures. In: 3rd Eur Congr Biotechnology, vol 1. Chemie, Weinheim, pp I209-I213.Google Scholar
  6. Beevers H (1979) Microbodies in higher plants. Annu Rev Plant Physiol 30: 159–193.CrossRefGoogle Scholar
  7. Beiderbeck R (1982) Two-phase culture — A method for the isolation of lipophilic substances from plant suspension cultures. Z Pflanzenphysiologie 108: 27–30.Google Scholar
  8. Berlin J (1983) Naturstoffe aus pflanzlichen Zellkulturen. Chem Unserer Zeit 17: 77–84.CrossRefGoogle Scholar
  9. Bisson W, Beiderbeck R, Reichhng J (1983) Die Produktion ätherischer Öle durch Zellsuspensionen der Kamille in einem Zweiphasensystem. Planta Med 47: 164–168.PubMedCrossRefGoogle Scholar
  10. Bundesverband der pharmazeutischen Industrie (ed) (1986) Rote Liste. Editio Cantor KG, Aulendorf, FRG.Google Scholar
  11. Deutschmann F, Hohmann B, Sprecher E, Stahl E (eds) (1979) Pharmazeutische Biologie. Drogenanalyse I: Morphologie und Anatomie. Fischer, Stuttgart New York.Google Scholar
  12. Embong MB, Hadziyev D, Molnar S (1977) Essential oils from spices grown in Alberta. Anise oil (Pimpinella anisum). Can J Plant Sci 57: 681–688.CrossRefGoogle Scholar
  13. Ernst D (1983) Endogene Cytokinine in einer Zellsuspensionskultur von Anis (Pimpinella anisum L.). Thesis, Ludwig-Maximilians-Univ, München.Google Scholar
  14. Ernst D (1986) Radioimmunoassay and gas chromatography/mass spectrometry for cytokinin determination. In: Linskens HF, Jackson JF eds Immunology in plant sciences. Modern Methods of Plant Analysis, New Ser, vol 4. Springer, Berlin Heidelberg New York Tokyo, 18–49.Google Scholar
  15. Ernst D, Oesterhelt D (1984) Effect of exogenous cytokinins on growth and somatic embryogenesis in anise cells (Pimpinella anisum L.). Planta 161: 246–248.CrossRefGoogle Scholar
  16. Ernst D, Oesterhelt D (1985) Changes of cytokinin nucleotides in an anise cell culture (Pimpinella anisum L.) during growth and embryogenesis. Plant Cell Rep 4: 140–143.CrossRefGoogle Scholar
  17. Ernst D, Schäfer W, Oesterhelt D (1983a) Isolation and quantitation of isopentenyladenosine in an anise cell culture by single-ion monitoring, radioimmunoassay and bioassay. Planta 159: 216–221.CrossRefGoogle Scholar
  18. Ernst D, Schäfer W, Oesterhelt D (1983b) Isolation and identification of a new, naturally occurring cytokinin (6-benzylaminopurineriboside) from an anise cell culture (Pimpinella anisum L.). Planta 159: 222–225.CrossRefGoogle Scholar
  19. Ernst D, Oesterhelt D, Schäfer W (1984) Endogenous cytokinins during embryogenesis in an anise cell culture (Pimpinella anisum L.). Planta 161: 240–245.CrossRefGoogle Scholar
  20. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158.PubMedCrossRefGoogle Scholar
  21. Gildemeister E, Hoffmann FR (1956) Die ätherischen Öle, vol 1. Akademie, Berlin.Google Scholar
  22. Gildemeister E, Hoffmann FR (1966) Die ätherischen Öle, vol 6. Akademie, Berlin.Google Scholar
  23. Heinz UJ (ed) (1984) Das Handbuch der modernen Pflanzenheilkunde. Bauer, Freiburg.Google Scholar
  24. Huber J, Constabel F, Gamborg OL (1978) A cell-counting procedure applied to embryogenesis in cell Suspension cultures of anise (Pimpinella anisum L.). Plant Sci Lett 12: 209–215.CrossRefGoogle Scholar
  25. Kartnig T, Moeckel H, Maunz B (1975) The occurrence of Cumarins and sterols in tissue-cultures of roots of Anethum graveolens and Pimpinella anisum. Planta Med 27: 1–4.PubMedCrossRefGoogle Scholar
  26. Koshioka M, Douglas TJ, Ernst D, Huber J, Pharis RP (1983a) Metabohsm of (3H)gibberellin A4 in somatic suspension cultures of anise. Phytochemistry 22: 1577–1584.CrossRefGoogle Scholar
  27. Koshioka M, Takeno K, Beall FD, Pharis RP (1983b) Purification and separation of plant gibberellins from their precursors and glycosyl conjugates. Plant Physiol 73: 398–406.PubMedCrossRefGoogle Scholar
  28. Kovar K-A, Bock E (1983) Quantitative determination of a mixture of extracts of drugs from volatile oils by high-performance liquid chromatography. J Chromatogr 262: 285–291.CrossRefGoogle Scholar
  29. Kudielka RA, Theimer RR (1983 a) Somatic embryogenesis in anise (Pimpinella anisum L.) cell cultures in microgravity environment. Proc Worksh Space biology, Cologne, Germany (ESA SP-206, May 1983), pp 63-68.Google Scholar
  30. Kudielka RA, Theimer RR (1983b) Derepression of glyoxylate cycle enzyme activities in anise suspension culture cells. Plant Sci Lett 31: 237–244.CrossRefGoogle Scholar
  31. Kudielka RA, Theimer RR (1983c) Repression of glyoxysomal enzyme activities in anise (Pimpinella anisum L.) suspension cultures. Plant Sci Lett 31: 245–252.CrossRefGoogle Scholar
  32. Kudielka RA, Kock H, Theimer RR (1981) Substrate-dependent formation of glyoxysomes in cell suspension cultures of anise (Pimpinella anisum L.). FEBS Lett 136: 8–12.CrossRefGoogle Scholar
  33. Lichtenthaler HK (1968) Verbreitung und relative Konzentrationen der lipophilen Plastidenchinone in grünen Pflanzen. Planta 81: 140–152.CrossRefGoogle Scholar
  34. Lichtenthaler HK (1977) Regulation of prenylquinone synthesis in higher plants. In: Lichtenthaler HK, Tevini M (eds) Lipids and lipid polymers in higher plants. Springer, Berhn Heidelberg New York.Google Scholar
  35. Lichtenthaler HK, Straub V (1975) The formation of lipoquinones in tissue cultures. Planta Med (Suppl):198-213.Google Scholar
  36. Lutzenberger A (1985) Substratabhängige Regulation und Verlauf der Glyoxysomenbildung bei pflanzlichen Zellsuspensionskulturen. Thesis, Ludwig-Maximilians-Univ, München.Google Scholar
  37. Lutzenberger A, Theimer RR (1983) Fatty acid-oxidation and glyoxylate cycle enzyme activities of induced glyoxysomes from anise suspension cultures. Plant Cell Rep 2: 160–163.CrossRefGoogle Scholar
  38. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.CrossRefGoogle Scholar
  39. Noma M, Huber J, Pharis RP (1979) Occurrence of 1(10)gibberellin A1 counterpart, GA1, GA4 and GA7 in somatic cell embryo cultures of carrot and anise. Agric Biol Chem 43: 1793–1794.CrossRefGoogle Scholar
  40. Noma M, Huber J, Ernst D, Pharis RP (1982) Quantitation of gibberellins and the metabolism of (3H) gibberellin A1 during somatic embryogenesis in carrot and anise cell cultures. Planta 155: 369–376.CrossRefGoogle Scholar
  41. Paupardin C, Garcia-Rodriguez MJ, Bricout J (1980) Multiplication végétative de quelques plantes aromatiques: problèmes posés par production d’essence. C R Acad Agric Fr 66: 658–666.Google Scholar
  42. Reichling J, Beiderbeck R, Becker H (1979) Vergleichende Untersuchungen über sekundäre Inhaltsstoffe bei Pflanzentumoren, Blüte, Kraut und Wurzel von Matricaria chamomilla L. Planta Med 36: 322–332.CrossRefGoogle Scholar
  43. Reichhng J, Bisson W, Becker H (1984) Vergleichende Untersuchungen zur Bildung und Akkumulation von etherischem Öl in der intakten Pflanze und in der Calluskultur von Matricaria chamomilla. Planta Med 50: 334–337.CrossRefGoogle Scholar
  44. Reichling J, Becker H, Martin R, Burkhardt G (1985) Comparative studies on the production and accumulation of essential oil in the whole plant and in cell cultures of Pimpinella anisum L. Z Natur-forsch Sec C Biosci 40: 465–468.Google Scholar
  45. Stahl E (1952) Der Einfluß der Destillationsdauer und der Wasserstoffionenkonzentration auf die Ausbeute an Azulen und Äther. Öl bei der Schafgarbe (Achillea millefolium L.). Pharm Ind 14: 262–265.Google Scholar
  46. Stahl E, Schild W (eds) (1981) Pharmazeutische Biologie. Drogenanalyse II: Inhaltsstoffe und Isoherungen. Fischer, Stuttgart New York.Google Scholar
  47. Theimer RR, Kudielka RA, Rösch I (1986) Induction of somatic embryogenesis in anise in microgravity. Naturwissenschaften 73: 442–443.PubMedCrossRefGoogle Scholar
  48. Tsetkov R (1970) Study on the fruit quality of some umbelhferous essential-oil plants. Planta Med 18: 350–353.CrossRefGoogle Scholar
  49. Wagner H (ed) (1980) Pharmazeutische Biologie. Drogen und ihre Inhaltsstoffe. Fischer, Stuttgart New York.Google Scholar
  50. Wanner G, Formanek H, Theimer RR (1981) The ontogeny of lipid bodies (spherosomes) in plant cells. Planta 151: 109–123.CrossRefGoogle Scholar
  51. Weiss RF (ed) (1974) Lehrbuch der Phytotherapie. Hippokrates, Stuttgart.Google Scholar
  52. Zepernick B, Langhammer L, Lüdcke JBP (eds) (1984) Lexikon der offiziellen Arzneipflanzen. De Gruyter, Berlin New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • D. Ernst
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedFederal Republic of Germany

Personalised recommendations