Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 8))

  • 640 Accesses

Abstract

The reasons for subjecting the tomato eultivar, Lycopersicon esculentum, to numerous cell and tissue culture studies have been twofold: agronomic improvement of this important crop species and exploitation of tomatO’s abundant classical genetics for basic research purposes. Several years ago we began experiments utilizing protoplasts of Lycopersicon species, with the goals of developing methods to culture and regenerate plants, influencing transmission of genomes following cell fusion, and genetically analyzing plants resulting from protoplast or fusion product regeneration. At the time, little information was available about the requirements for successful culture and regeneration of members of the tomato genus. We looked to the facile protoplast culture and fusion of other Solanaceous species, Nicotiana and Petunia, as guides, as well as the arduous but effective methods for potato protoplasts developed by Shepard et al. (1980). Here we will summarize our knowledge of Lycopersicon protoplast culture and fusion and the analysis of regenerated plants.

A portion of this article has been derived (with permission) from one previously published in the Iowa State Journal for Research (Hanson et al. 1987). The literature review for this article was completed in 1986

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams TL, Quiros CF (1985) Somatic hybridization between Lycopersicon peruvianum and L. pen-nellii: regenerating ability and antibiotic resistance as selection systems. Plant Sci 40:209–219

    Article  CAS  Google Scholar 

  • Behki RM, Lesley SM (1976) In vitro plant regeneration from leaf explants of Lycopersicon esculen-tum (tomato). Can J Bot 54:2409–2414

    Article  CAS  Google Scholar 

  • Belliard G, Vedel F, Pelletier G (1979) Mitochondrial recombination in cytoplasmic hybrids of Nico-tiana tabacum by protoplast fusion. Nature 218:401–403

    Article  Google Scholar 

  • Bernatsky R, Tanksley SD (1986) Towards a saturated linkage map in tomato based on isozyme and random cDNA sequences. Genetics 112:887–893

    Google Scholar 

  • Boeshore ML Lifshitz I, Hanson MR, Izhar S (1983) Novel composition of mitochondrial genomes in Petunia somatic hybrids derived from cytoplasmic male sterile and fertile plants. Mol Gen Genet 190:459–467

    Article  CAS  Google Scholar 

  • Cassells AC, Barlass M (1976) Environmentally induced changes in the cell walls of tomato leaves in relation to cell and protoplast release. Physiol Plant 37:239–246

    Article  CAS  Google Scholar 

  • Cassells AC, Barlass M (1978) A method for the isolation of stable mesophyll protoplasts from tomato leaves throughout the year under standard conditions. Physiol Plant 42:236–242

    Article  CAS  Google Scholar 

  • Clark EM, Izhar S, Hanson MR (1985) Independent segregation of the plastic genome and cytoplasmic male sterility in Petunia somatic hybrids. Mol Gen Genet 199:440–445

    Article  CAS  Google Scholar 

  • Evans DA, Sharp WR (1983) Single gene mutations in tomato plants regenerated from tissue culture. Science 221:949–951

    Article  PubMed  CAS  Google Scholar 

  • Frankenberger EA, Hasegawa PM, Tigcelaar EC (1981) Influence of environment and developmental state on the shoot-forming capacity of tomato genotypes. Z Pflanzenphysiol 102:221–232

    Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 82:5824–5828

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Shyluk JP, Shahin EA (1981) Isolation, fusion and culture of plant protoplasts. In: Thorpe TA (ed) Plant tissue culture. Academic Press, New York, pp 115–153

    Google Scholar 

  • Gleba YY, Evans DA (1983) Genetic analysis of somatic hybrid plants. In: Evans DA, Sharp WR, Am-mirato PV, Yamada Y (eds) Handbook of plant cell culture Vol 1. MacMillan, New York, pp 322–357

    Google Scholar 

  • Glimelius K, Bonnett HT (1981) Somatic hybridization in Nicotiana: restoration of photoautotrophy to an albino mutant with defective plastids. Planta 153:497–503

    Article  Google Scholar 

  • Gupta PP, Gupta M, Schieder O (1982) Correction of nitrate reductase defect in auxotrophic plant cells through protoplast-mediated intergeneric gene transfers. Mol Gen Genet 188:378–383

    Article  CAS  Google Scholar 

  • Handley LW, Nickels RL, Cameron MW, Moore PP, Sink KC (1986) Somatic hybrids plants between Lycopersicon esculentum and Solanum lycopersicoides. Theor Appl Genet 71:691–697

    Article  Google Scholar 

  • Hangarter RP, Peterson MD, Good NE (1980) Biological activities of indoleactylamino acids and their use as auxin in tissue culture. Plant Physiol 65:761–767

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR (1981) Regeneration of tomato plants in vitro from leaf and hypocotyl explants. Tomato Gen Coop Rep 32:15–16

    Google Scholar 

  • Hanson MR (1982) Cell and tissue culture of Lycopersicon. In: Fujiwara A (ed) Plant Tissue Culture 1982. Maruzen, Tokyo, pp 193–194

    Google Scholar 

  • Hanson MR (1983) Stability, variation and recombination in plant mitochondrial genomes via cell culture and somatic hybridization. Oxford Surv Plant Mol Cell Biol 1:33–52

    Google Scholar 

  • Hanson MR, Boeshore ML, McClean PE, O’Connell MA, Nivison HT (1986) The isolation of mitochondria and mitochondrial DNA. Methods Enzymol 118:437–453

    Article  CAS  Google Scholar 

  • Hanson MR, O’Connell MA, Vidair C (1987) Regeneration of calli and plants following protoplast fusion in Lycopersicon. Iowa State J Res 61:445–458

    Google Scholar 

  • Herman EB, Hass GJ (1978) Shoot formation in tissue cultures of Lycopersicon esculentum Mill. Z Pflanzenphysiol 89:467–470

    Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hosticka L, Hanson MR (1982) A tomato cultivar exhibiting rapid callus growth. Tomato Gen Coop Rep 34:9

    Google Scholar 

  • Hosticka L, Hanson MR (1984) Induction of plastid mutations by nitrosomethyl urea. J Hered 75:242–246

    CAS  Google Scholar 

  • Kao KN, Michayluk MR (1974) A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115:355–367

    Article  CAS  Google Scholar 

  • Kartha K, Gamborg OL, Shyluk JP, Constabel F (1976) Morphogenetic investigations on in vitro leaf culture of tomato (Lycopersicon esculentum Mill. cv. Starfire) and high frequency plant regeneration. Z Pflanzenphysiol 77:292–301

    Google Scholar 

  • Koblitz H, Koblitz D (1982) Experiments on tissue culture in the genus Lycopersicon Miller: mesophyll protoplast regeneration to plants in Lycopersicon esculentum cv. ‘Nadja’. Plant Cell Rep 1:143–146

    Article  Google Scholar 

  • Kut SA, Evans DA (1982) Plant regeneration from cultured leaf explants of eight wild tomato species and two related Solanum species. In Vitro 18:593–598

    Article  CAS  Google Scholar 

  • Locy RD (1983) Callus formation and organogenesis by explants of six Lycopersicon species. Can J Bot 61:1072–1079

    Article  Google Scholar 

  • Maliga PG, Lazar G, Joo F, Nagy AH, Menczel L (1977) Restoration of morphogenic potential in Nicotiana by somatic hybridization. Mol Gen Genet 157:291–296

    Article  CAS  Google Scholar 

  • McClean PE, Hanson MR (1986) Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species. Genetics 112:649–667

    PubMed  CAS  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Article  CAS  Google Scholar 

  • Medgyesy P, Menczel L, Maliga P (1980) The use of cytoplasmic streptomycin resistance; chloroplast transfer from Nicotiana tabacum into Nicotiana sylvestris, and isolation of their somatic hybrids. Mol Gen Genet 179:693–698

    Article  CAS  Google Scholar 

  • Medgyesy P, Fejes E, Maliga P (1985) Interspecific chloroplast recombination in a Nicotiana somatic hybrid. Proc Natl Acad Sci 82:6960–6964

    Article  PubMed  CAS  Google Scholar 

  • Melchers G, Sacristan MD, Holder AA (1978) Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsberg Res Cornmun 43:203–218

    Article  Google Scholar 

  • Menczel L, Galiba G, Nagy F, Maliga P (1982) Effect of radiation dosage on efficiency of chloroplast transfer by protoplast fusion in Nicotiana. Genetics 100:487–495

    PubMed  CAS  Google Scholar 

  • Morgan A, Cocking EC (1982) Plant regeneration from protoplasts of Lycopersicon esculentum Mill. Z Pflanzenphysiol 106:97–104

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niedz RP, Ruter SM, Handley LW, Sink KC (1985) Plant regeneration from leaf protoplasts of six tomato cultivars. Plant Sci 39:199–204

    Article  Google Scholar 

  • Nitsch JP (1965) Deux especes photoperiodiques de jours courts: Plumbago indica L. et Plumbago zeylanica. Bull Soc Bot Fr 112:517–522

    Google Scholar 

  • O’Connell MA, Hanson MR (1985) Somatic hybridization between Lycopersicon esculentum and Lycopersicon pennellii. Theor Appl Genet 70:1–12

    Google Scholar 

  • O’Connell MA, Hanson MR (1986) Regeneration of somatic hybrid plants formed between Lycopersicon esculentum and Solanum rickii. Theor Appl Genet 72:59–65

    Google Scholar 

  • O’Connell MA, Hosticka LR, Hanson MR (1986) Use of isozymes to examine genome stability in cultured Lycopersicon. Plant Cell Rept 5:276–279

    Article  Google Scholar 

  • O’Connell MA, Hanson MR (1987) Regeneration of somatic hybrids formed between Lycopersicon esculautum and L. pennellii Theor Appl Genet 75:83–89

    Google Scholar 

  • Ohki S, Bigot C, Mousseau J (1978) Analysis of shoot-forming capacity in vitro in two lines of tomato (Lycopersicon esculentum Mill.) and their hybrids. Plant Cell Physiol 19:27–42

    CAS  Google Scholar 

  • Padmanabhan V, Paddock EF, Sharp WR (1974) Plantlet formation from Lycopersicon esculentum leaf callus. Can J Bot 52:1429–1432

    Article  Google Scholar 

  • Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, London, pp 667–677

    Google Scholar 

  • Rothenberg M, Boeshore ML, Hanson MR, Izhar S (1985) Intergenomic recombination of mitochon-drial genomes in a somatic hybrid plant. Curr Genet 9:615–618

    Article  CAS  Google Scholar 

  • Shahin EA (1984) Isolation and culture of protoplasts: tomato. In: Vasil IK (ed) In: Cell Culture and Somatic Cell Genetics of Plants Vol 1. Academic Press, New York, pp 370–380

    Google Scholar 

  • Shahin EA (1985) Totipotency of tomato protoplasts. Theor Appl Genet 69:235–240

    Article  CAS  Google Scholar 

  • Shephard JF (1980) Abscisic acid-enhanced shoot initiation in protoplast-derived calli of potato. Plant Sci Lett 18:327–333

    Article  Google Scholar 

  • Shepard JF, Bidney D, Shahin E (1980) Potato protoplasts in crop improvement. Science 208:17–24

    Article  PubMed  CAS  Google Scholar 

  • Shepard JF, Bidney D, Barsby T, Kemble R (1983) Genetic transfer in plants through interspecific protoplast fusion. Science 219:683–688

    Article  PubMed  CAS  Google Scholar 

  • Sink KC, Reynolds JF (1986) Tomato (Lycopersicon esculentum). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 2. Crops I. Springer, Berlin Heidelberg New York, pp 319–344

    Google Scholar 

  • Tabaeizadeh Z, Perennes C, Bergounioux C (1985) Increasing the variability of Lycopersicon peruvianum Mill, by protoplast fusion with Petunia hybrida L. Plant Cell Rep 4:7–11

    Article  Google Scholar 

  • Tal M, Dehan K, Heikin H (1977) Morphogenetic potential of cultured leaf sections of cultivated and wild species of tomato. Ann Bot 41:937–941

    Google Scholar 

  • Lanksley SD, Rick CM (1980) Isozymic gene linkage map of the tomato: applications in genetics and breeding. Theor Appl Genet 57:161–170

    Article  Google Scholar 

  • Thomas BR, Pratt B (1981) Efficient hybridization between Lycopersicon esculentum and L. peru-vianum via embryo callus. Theor. Appl Genet 59:215–219

    Google Scholar 

  • Vidair C, Hanson MR (1985) Agrobacterium-transformed tomato cells replace the hormone requirements for growth of tomato leaf protoplasts. Plant Sci 41:185–192

    Article  CAS  Google Scholar 

  • Zapata FJ, Sink KC (1981) Somatic embryogenesis from Lycopersicon peruvianum leaf mesophyll protoplasts. Theor Appl Genet 59:265–268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hanson, M.R., O’Connell, M.A., Vidair, C. (1989). Somatic Hybridization in Tomato. In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering I. Biotechnology in Agriculture and Forestry, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73614-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73614-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73616-2

  • Online ISBN: 978-3-642-73614-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics