Effect of Angiotensin-Converting Enzyme Inhibitors on Myocardial Perfusion

Conference paper


Inhibition of the angiotensin I-converting enzyme (ACE) results in diminished production of angiotensin II which is the active vasoconstrictor peptide of the renin- angiotensin system. The effect of ACE inhibitors is, however, complex. Apart from their interference with the plasmatic or vascular renin-angiotensin system, they may affect the central [5] and, in particular, the sympathetic nervous system [3, 34] as well as the kallikrein-kinin system [28] and prostaglandins [43]. Finally, angiotensin II acts in a directly positively inotropic way [32], increases vascular permeability [26], and may attract neutrophils [15, 21]. Some converting enzyme inhibitors have been claimed to have free radical scavenger potency as do other drugs possessing an (SH) sulfhydryl-group [37]. Thus, there are multiple ways how ACE inhibitors may influence the heart and coronary circulation. Coronary circulation, however, is a peculiar topic for the pharmacologist since it is influenced by many factors including metabolic demand of the heart and mechanical compression of the coronary vasculature by cardiac contraction.


Myocardial Perfusion Myocardial Ischemia Plasma Renin Activity Coronary Blood Flow Coronary Stenosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aversano T, Becker LC (1985) Persistence of coronary vasodilator reserve despite functionally significant flow reduction. Am J Physiol 248: H 403–411Google Scholar
  2. 2.
    Canty JM, Klocke FJ (1985) Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation 71: 370–377PubMedCrossRefGoogle Scholar
  3. 3.
    Clough DP, Collis MG, Conway J, Hatton R, Keddie JR (1982) Interaction of angiotensin-converting enzyme inhibitors with the function of the sympathetic nervous system. Am J Cardiol 49: 1410–1414PubMedCrossRefGoogle Scholar
  4. 4.
    Dargie HJ, McAlpine HM, Morton JJ (1987) Neuroendocrine activation in acute myocardial infarction. J Cardiovasc Pharmacol 9 [Suppl 2]: 21–24CrossRefGoogle Scholar
  5. 5.
    Deboben A, Inagami T, Ganten D (1983) Tissue renin. In: Genest J, Kichel O (eds) Hypertension: physiophathology and treatment. McGraw, New York pp 194–209Google Scholar
  6. 6.
    Dengler H (1956) Über einen reninartigen Wirkstoff in Arterienextrakten. Arch Exp Pathol Pharmacol 227: 481–487CrossRefGoogle Scholar
  7. 7.
    Desjardins-Giasson S, Gutkowska J, Garcia R, Genest J (1981) Renin substrate in rat mesenteric artery. J Physiol Pharmacol 59: 528–532CrossRefGoogle Scholar
  8. 8.
    Dzau VJ (1984) Vascular wall renin-angiotensin pathway in control of the circulation. A hypothesis. Am J Med 77: 31–36PubMedGoogle Scholar
  9. 9.
    Ertl G (1987) Coronary vasoconstriction in experimental myocardial ischemia. J Cardiovasc Pharmacol 9 [Suppl 2]: 9–17CrossRefGoogle Scholar
  10. 10.
    Ertl G (1988) Angiotensin converting enzyme inhibitors and ischemic heart disease. Eur Heart J 9: 716–727PubMedGoogle Scholar
  11. 11.
    Ertl G, Fuchs M, Oswald S, Wichmann J, Lochner W (1982) Influence of the ischemic coronary bed on collateral blood flow. Basic Res Cardial 77: 520–535CrossRefGoogle Scholar
  12. 12.
    Ertl G, Kloner RA, Alexander RW, Braunwald E (1982) Limitation of experimental infarct size by an angiotensin-converting enzyme inhibitor. Circulation 65: 40–48PubMedCrossRefGoogle Scholar
  13. 13.
    Ertl G, Alexander RW, Kloner RA (1983) Interactions between coronary occlusion and the renin-angiotensin system in the dog. Basic Res Cardiol 78: 518–533PubMedCrossRefGoogle Scholar
  14. 14.
    Ertl G, Fiedler VB, Bauer B, Schwarzenberger P, Kochsiek K (1986) Effects of nifedipine and indomethacin on leukotriene C4 and D4-induced coronary constriction at normal and reduced coronary perfusion in dogs. J Cardiovasc Pharmacol 8: 1078–1085PubMedCrossRefGoogle Scholar
  15. 15.
    Farber HW, Cenetr DM, Rounds S (1985) Bovine and human endothelial cell production of neutrophil chemoattractant activity in response to components of the angiotensin system. Circ Res 57: 898–902PubMedGoogle Scholar
  16. 16.
    Faxon DP, Creager MA, Halprin JL, Sussmann HA, Gavras H, Ryan TJ (1982) The effect of angiotensin converting enzyme inhibition on coronary blood flow and hemodynamics in patients without coronary artery disease. Int J Cardiol 2: 251–262PubMedCrossRefGoogle Scholar
  17. 17.
    Foult J-M, Tavolaro O, Antony J, Nitenberg A (1988) Direct myocardial and coronary effects of enlaprilat in patients with dilated cardiomyopathy: assessment by a bilateral intracoronary infusion technique. Circulation 77: 337–344PubMedCrossRefGoogle Scholar
  18. 18.
    Frame LH, Powell WJ (1976) Progressive perfusion impairment during prolonged low flow myocardial ischemia in dogs. Circ Res 39: 269–276PubMedGoogle Scholar
  19. 19.
    Garst JB, Koletsky S, Wisenbaugh PE, Hadady M, Matthews D (1979) Arterial wall renin and renal venous renin in the hypertensive rat. Clin Sci 56: 41–46PubMedGoogle Scholar
  20. 20.
    Gavras H, Brunner HR, Turini GA, Kershaw GR, Tifft CP, Cuttelod S, Gavras J, Vukovich RA, McKinstry DN (1978) Antihypertensive effect of the oral angiotensin converting-enzyme inhibitor SQ 14225 in man. N Engl J Med 298: 991–995PubMedCrossRefGoogle Scholar
  21. 21.
    Goetzl EJ, Klickstein LB, Wass KWK, Wintroub BU (1980) The preferential human mononuclear leukocyte chemotactic activity of the substituent tetrapeptides of angiotensin II. Biochem Biophys Res Commun 97: 1097–1102PubMedCrossRefGoogle Scholar
  22. 22.
    Gorman MW, Sparks HV (1982) Progressive coronary vasoconstriction during relative ischemia in canine myocardium. Circ Res 51: 411–420PubMedGoogle Scholar
  23. 23.
    Gould AB, Skeggs LT, Kahn JR (1964) The presence of renin activity in blood vessel walls. J Exp Med 119: 389–399PubMedCrossRefGoogle Scholar
  24. 24.
    Guyton RA, McClenathan JH, Michaelis LL (1977) Evolution of regional ischemia distal to a proximal coronary stenosis: self-propagation of ischemia. Am J Cardiol 40: 381–392PubMedCrossRefGoogle Scholar
  25. 25.
    Hutchinson JS, Mendelsohn FAO, Doyle AE (1980) Hypotensive action of captopril and saralasin in intact and anephric spontaneously hypertensive rats. Hypertension 2: 119–124PubMedGoogle Scholar
  26. 26.
    Jährhult J (1971) Comparative effects of angiotensin and noradrenaline on resistance, capacitance, and precapillary sphincter vessels in cat skeletal muscle. Acta Physiol Scand 81: 315–324CrossRefGoogle Scholar
  27. 27.
    Jimenez-Diaz C (1949) Le rôle de la paroi artérielle dans la régulation neurochimique de la pression artérielle, Schweiz Med Wochensch 38: 920–923Google Scholar
  28. 28.
    Johnston CI, Clappison BH, Anderson WP, Yasujima M (1982) Effect of angiotensin-converting enzyme inhibition on circulating and local kinin levels. Am J Cardiol 49: 1401–1404PubMedCrossRefGoogle Scholar
  29. 29.
    Liang C-S, Gavras H (1978) Renin-angiotensin system inhibition in conscious dogs during acute hypoxemia. Effects on systemic hemodynamics, regional blood flows and tissue metabolism. J Clin Invest 62: 961–970PubMedCrossRefGoogle Scholar
  30. 30.
    Liang C-S, Gavras H, Hood WB (1978) Renin-angiotensin system inhibition in conscious sodium depleted dogs. Effects on systemic and coronary hemodynamics. J Clin Invest 62: 874–883CrossRefGoogle Scholar
  31. 31.
    Lilly LS, Pratt RE, Alexander RW, Gimbrone MA, Dzau VJ (1983) Cultured vascular endothelial cells contain the complete renin-angiotensin system. Clin Res 31: 332 AGoogle Scholar
  32. 32.
    Lorber V (1942) The action of angiotonin on the completely isolated mammalian heart. Am Heart J 23: 37–42CrossRefGoogle Scholar
  33. 33.
    Magrini F, Shimizu M, Roberts N, Fouad FM, Tarazi RC, Zanchetti A (1987) Converting-enzyme inhibition and coronary blood flow. Circulation 75 [Suppl I]: 168–174Google Scholar
  34. 34.
    Malik KU, Nasjletti A (1976) Facilitation of adrenergic transmission by locally generated angiotensin II in rat mesenteric arteries. Circ Res 38: 26–30PubMedGoogle Scholar
  35. 35.
    Michorowski B, Ceremuzynski L (1983) The renin-angiotensin-aldosterone system and the clinical course of acute myocardial infarction. Eur Heart J 4: 259–264PubMedGoogle Scholar
  36. 36.
    Muiesan G, Alicandri CL, Agabiti-Rosei E (1982) Angiotensin-converting enzyme inhibition, catecholamines and hemodynamics in essential hypertension. Am J Cardiol 49: 1420–1424PubMedCrossRefGoogle Scholar
  37. 37.
    Myers ML, Bolli R, Lekich RF, Hartley CJ, Robert T (1986) N-2-mercaptopropionylglycine improves recovery of myocardial function after reversible regional ischemia. J Am Coll Cardiol 8: 1161–1168PubMedCrossRefGoogle Scholar
  38. 38.
    Needleman P, Kaley G (1978) Cardiac and coronary prostaglandin synthesis and function. N Engl J Med 298: 1122–1128PubMedCrossRefGoogle Scholar
  39. 39.
    Re R, Fallon JT, Dzau VJ, Quay SC, Haber E (1982) Renin synthesis by canine aortic smooth muscle cells in culture. Life Sci 30: 99–106PubMedCrossRefGoogle Scholar
  40. 40.
    Rosenthal JH, Pfeifler B, Michailov ML, Pschorr J, Jacob ICM, Dahlheim H (1984) Investigations of components of the renin-angiotensin system in rat vascular tissue. Hypertension 6: 383–390PubMedGoogle Scholar
  41. 41.
    Saye JA, Singer HA, Peach MJ (1984) Role of endothelium in conversion of angiotensin I to angiotensin II in rabbit aorta. Hypertension 6: 216–221PubMedGoogle Scholar
  42. 42.
    Stalcup SA, Lipset JS, Woan J-M, Leuenberger P, Mellins RB (1979) Inhibition of angiotensin converting enzyme activity in cultured endothelial cells by hypoxia. J Clin Invest 63: 966–976PubMedCrossRefGoogle Scholar
  43. 43.
    Swartz SL, Williams GH (1982) Angiotensin-converting enzyme inhibition and prostaglandins. Am J Cardiol 49: 1405–1409PubMedCrossRefGoogle Scholar
  44. 44.
    Thurston H, Swales JD (1977) Blood pressure response of nephrectomized hypertensive rats to converting enzyme inhibition: evidence for persistent vascular renin activity. Clin Sci 52: 299–304Google Scholar
  45. 45.
    Van Gilst WH, De Graeff PA, Wesseling H, De Langen CDJ (1986) Reduction of reperfusion arrhythmias in the ischemic isolated rat heart by angiotensin converting enzyme inhibitors: a comparison of captopril, enalapril, and HOE 498. J Cardiovasc Pharmacol 8: 722–728PubMedGoogle Scholar
  46. 46.
    Waeber B, Brunner HR, Brunner DB, Curtet A-L, Turini GA, Gavrs H (1980) Discrepancy between antihypertensive effect and angiotensin converting enzyme inhibition by captopril. Hypertension 2: 236–242PubMedGoogle Scholar
  47. 47.
    Xiang J-Z, Linz W, Becker H, Ganten D, Lang RE, Schölkens B, Unger T (1985) Effects of converting enzyme inhibitors: ramipril and enalapril on peptide action and sympathetic neurotransmission in the isolated heart. Eur J Pharmacol 113: 215–223PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • G. Ertl
    • 1
  1. 1.Medizinische KlinikJulius-Maximilians-UniversitätWürzburgGermany

Personalised recommendations