Skip to main content

β-Phenylethylamine, Phenylethanolamine, Tyramine and Octopamine

  • Chapter
Catecholamines II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 90 / 2))

Abstract

Phenylethylamine derivatives (Fig. 1) were first synthesized and tested as sympathomimetic compounds (Barger and Dale 1910). Tyramine and octopamine were classified as indirectly acting sympathomimetic amines (Trendelenburg 1972). Octopamine was considered a “false” neurotransmitter, meaning that the amine was taken up, stored in, and released from catecholaminergic terminals upon nerve stimulation, but its release resulted in failure of transmission, since it exerted only a weak postsynaptic effect (Kopin 1968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelrod J (1962a) The enzymatic N-methylation of serotonin and other amines. J Pharmacol Exp Ther 138: 28–33

    PubMed  CAS  Google Scholar 

  • Axelrod J (1962b) Purification and properties of phenylethanolamine-N-methyl transferase. J Biol Chem 237: 1657–1660

    PubMed  CAS  Google Scholar 

  • Axelrod J (1963) Enzymatic formation of adrenaline and other catechols from monophenols. Science 140: 499–500

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Saavedra JM (1977) Octopamine. Nature 265: 501–504

    Article  PubMed  CAS  Google Scholar 

  • Bakhle YS, Youdim MBH (1979) The metabolism of 5-hydroxytryptamine and β-phenylethylamine in perfused rat lung and in vitro. Br J Pharmacol 65: 147–154

    PubMed  CAS  Google Scholar 

  • Baldessarini RJ (1971) Release of aromatic amines from brain tissues of the rat in vitro. J Neurochem 18: 2509–2518

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Vogt M (1971) The uptake and subcellular distribution of aromatic amines in the brain of the rat. J Neurochem 18: 2519–2533

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Vogt M (1972) Regional release of aromatic amines from tissues of the rat brain in vitro. J Neurochem 19: 755–761

    Article  PubMed  CAS  Google Scholar 

  • Barger A, Dale HH (1910) Chemical structure and sympathomimetic action of amines. J Physiol (Lond) 41: 19–59

    CAS  Google Scholar 

  • Barker DL, Molinoff PB, Kravitz EA (1972) Octopamine in the lobster nervous system. Nature New Biol 236: 61–63

    Article  PubMed  CAS  Google Scholar 

  • Barker DL, Kushner PD, Hooper NK (1979) Synthesis of dopamine and octopamine in the crustacean stomatogastric nervous system. Brain Res 161: 99–113

    Article  PubMed  CAS  Google Scholar 

  • Battelle BA, Kravitz EA (1978) Targets of octopamine action in the lobster: cyclic nucleotide changes and physiological effects in hemolymph, heart and exoskeletal muscle. J Pharmacol Exp Ther 205: 438–448

    PubMed  CAS  Google Scholar 

  • Battelle BA, Evans JA, Chamberlain SC (1982) Efferent fibers to Limulus eyes synthesize and release octopamine. Science 216: 1250–1252

    Article  CAS  Google Scholar 

  • Baud P, Arbilla S, Cantrill RC, Scatton B, Langer SZ (1985) Trace amines inhibit the electrically evoked release of [3H]acetylcholine from slices of rat striatum in the presence of pargyline: similarities between β-phenylethylamine and amphetamine. J Pharmacol Exp Ther 235: 220–229

    PubMed  CAS  Google Scholar 

  • Boakes RJ, Dua PR, Baker, GB (1976) Actions of microiontophoretically applied p- and m-tyramine on caudate neurones. Proc Meeting Eur Soc Neurochem Bath UK Abst 59C

    Google Scholar 

  • Bodnaryk RP (1979) Basal dopamine- and octopamine stimulated adenylate cyclase activity in the brain of the moth, Mamestra configurata, during its metamorphosis. J Neurochem 33: 275–282

    Article  PubMed  CAS  Google Scholar 

  • Boulton AA (1976) Cerebral aryl alkyl aminergic mechanisms. In: Usdin E, Sandler M (Eds) Trace Amines and the Brain. Marcell Dekker, New York, pp 21–39

    Google Scholar 

  • Boulton AA (1978) The tyramines: functionally significant biogenic amines or metabolic accidents? Life Sci. 23: 659–672

    Article  PubMed  CAS  Google Scholar 

  • Boulton AA (1979) Trace amines in the central nervous system. In: Tipon KF (Ed) International Review of Biochemistry. Physiological and Pharmacological Biochemistry vol 26. University Park Press, Baltimore, pp 179–206

    Google Scholar 

  • Boulton AA, Baker GB (1975) The subcellular distribution of β-phenylethylamine, p-tyramine and tryptamine in rat brain. J Neurochem 25: 477–481

    Article  PubMed  CAS  Google Scholar 

  • Boulton AA, Dyck LE (1974) Biosynthesis and excretion of meta and para tyramine in the rat. Life Sci 14: 2497–2506

    Article  PubMed  CAS  Google Scholar 

  • Boulton AA, Juorio AV (1979) The tyramines: are they involved in the psychosis? Biol Psychiat 14: 413–419

    PubMed  CAS  Google Scholar 

  • Boulton AA, Wu PH (1972) Biosynthesis of cerebral phenolic amines. I In vivo formation of p-tyramine, octopamine and synephrine. Can J Biochem 50: 261–267

    Article  PubMed  CAS  Google Scholar 

  • Boulton AA, Wu PH (1973) Biosynthesis of cerebral phenolic amines. II In vivo regional formation of p-tyramine and octopamine from tyrosine and dopamine. Can J Biochem 51: 428–435

    Article  PubMed  CAS  Google Scholar 

  • Boulton AA, Dyek LE, Durden DA (1974) Hydroxylation of β-phenylethylamine in the rat. Life Sci 15: 1673–1683

    Article  PubMed  CAS  Google Scholar 

  • Boulton AA, Juorio AV, Philips SR, WU PH (1975) Some arylalkylamines in rabbit brain. Brain Res. 96: 212–216

    Article  PubMed  CAS  Google Scholar 

  • Boulton AA, Philips SR, Durden DA, Davis BA, Baker GB (1976) The tissue and cerebral subcellular distribution of some arylalkylamines in the rat and the effect of certain drug treatments on those distributions. Adv Mass Spectrom Biochem Med 1: 193–205

    CAS  Google Scholar 

  • Boulton AA, Juorio AV, Philips SR, Wu PA (1977) The effects of reserpine and 6–hy- droxydopamine on the concentrations of some arylalkylamines in rat brain. Br J Pharmacol 59: 209–214

    PubMed  CAS  Google Scholar 

  • Braestrup C, Randrup A (1978) Stereotyped behavior in rats induced by phenylethyl- amine, dependence on dopamine and noradrenaline, and possible relation to psychoses. In Mosnaim AD, Wolf ME (Eds) Noncatecholic Phenylethylamines part 1. Phenylethylamine: Biological Mechanisms and Clinical Aspects. Marcell Dekker New York pp 245–269

    Google Scholar 

  • Braestrup C, Anfersen H, Randrup A (1975) The monoamine oxidase B inhibitor de- prenyl potentiates phenylethylamine behavior in rats without inhibition of catecholamine metabolite formation. Eur J Pharmacol 34: 181–187

    Article  PubMed  CAS  Google Scholar 

  • Brandau K, Axelrod J (1972) The biosynthesis of octopamine. Naunyn-Schmiedeberg’s Arch Pharmacol 273: 123–133

    Article  PubMed  CAS  Google Scholar 

  • Brandau K, Axelrod J (1973) Ring dehydroxylation and N-methylation of noradrenaline and dopamine in the intact rat brain. In: Usdin E, Snyder S (Eds) Frontiers in Catecholamine Research. Pergamon Press, New York, pp 129–131

    Google Scholar 

  • Breen CA, Atwood HL (1983) Octopamine — a neurohormone with presynaptic activity dependent effects at crayfish neuromuscular junctions. Nature 303: 716–718

    Article  PubMed  CAS  Google Scholar 

  • Buck SH, Murphy RC, Molinoff PB (1977) The normal occurrence of octopamine in the central nervous system of the rat. Brain Res. 122: 281–297

    Article  PubMed  CAS  Google Scholar 

  • Carlson AD (1969) Neural control of firefly luminescence. Adv Insect Physiol 6: 51–96

    Article  CAS  Google Scholar 

  • Carpenter DO, Gaubatz GL (1974) Octopamine receptors on Aplysia neurones mediate hyperpolarization by increasing membrane conductance. Nature 252: 483–485

    Article  PubMed  CAS  Google Scholar 

  • Christensen TA, Sherman TG, McCaman RE, Carlson AD (1983) Presence of octopamine in firefly photomotor neurons. Neuroscience 9: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Coulon JF, Lafon-Cazal M, David JC (1984) In vitro occurrence of m-octopamine in the cultured cephalic ganglion of Locusta migratoria L. after L-dopa administration. Comp Biochem Physiol 78C: 77–80

    CAS  Google Scholar 

  • Creveling CR, Daly JW, Witkop B, Udenfriend S (1962a) Substrates and inhibitors of dopamine-β-oxidase. Biochem Biophys Acta 64: 125–134

    Article  PubMed  CAS  Google Scholar 

  • Creveling CR, Levitt M, Udenfriend S (1962b) An alternative route for the biosynthesis of norepinephrine. Life Sci 10: 523–526

    Article  Google Scholar 

  • Danielson TJ, Wishart TB, Boulton AA (1976) Effect of acute and chronic injection of amphetamine on intracranial self-stimulation ( ICS) and some arylalkylamines in rat brain. Life Sci 18: 1237–1243

    Article  PubMed  CAS  Google Scholar 

  • Danielson TJ, Boulton AA, Robertson HA (1977a) m-Octopamine, p-octopamine and phenylethanolamine in rat brain: a sensitive, specific assay and the effects of some drugs. J Neurochem 29: 1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Danielson TJ, Wishart TB, Robertson HA, Boulton AA (1977 b) Effect of acute and chronic injections of amphetamine on intracranial self stimulation: amphetamine levels and effects upon some arylalkylamines in rat brain. Prog Neuropsycho- pharmacol 1: 279–284

    Article  CAS  Google Scholar 

  • David JC (1984) Relationship between phenolamines and catecholamines during rat brain embryonic development in vivo and in vitro. J Neurochem 43: 668–674

    Article  PubMed  CAS  Google Scholar 

  • David JC, Coulon JF (1985) Octopamine in invertebrates and vertebrates. A Review. Progress in Neurobiology 24: 141–185

    Article  PubMed  CAS  Google Scholar 

  • David JC, Dairman W, Udenfriend S (1974) On the importance of decarboxylase in the metabolism of phenylalanine, tyrosine and tryptophan. Arch Biochem Biophys 160: 561–568

    Article  PubMed  CAS  Google Scholar 

  • Davis BA, Yu EH, Carson K, O’Sullivan K, Boulton AA (1982) Plasma levels of phenylacetic acid, m- and p-hydroxyphenyl acetic acid and platelet monoamine oxidase activity in schizophrenic and other patients. Psychiat Res 6: 97–105

    Article  CAS  Google Scholar 

  • Dudai Y, Zvi S (1984) High affinity [3H]octopamine binding sites in Drosophila me- lanogaster: interaction with ligands and relationship to octopamine receptors. Comp Biochem Physiol 772: 145–151

    Google Scholar 

  • Durden DA, Boulton AA (1982) Identification and distribution of phenylacetic acid in the brain of the rat. J Neurochem 38: 1532–1536

    Article  PubMed  CAS  Google Scholar 

  • Durden DA, Philips SR, Boulton AA (1973) Identification and distribution of β-phenylethylamine in the rat. Can J Biochem 51: 995–1002

    Article  PubMed  CAS  Google Scholar 

  • Edwards DJ, Blau K (1972 a) Analysis of phenylethylamines in biological tissues by gas-liquid chromatography with electrocapture detection. Anal Biochem 45: 387–402

    Article  PubMed  CAS  Google Scholar 

  • Edwards DJ, Blau K (1972b) Aromatic acids derived from phenylalanine in the tissues of rats with experimentally induced phenylketonuria-like characteristics. Biochem J 130: 495–503

    PubMed  CAS  Google Scholar 

  • Edwards DJ, Blau K (1973) Phenethylamines in brain and liver of rats with experimentally induced phenylketonuria-like characteristics. Biochem J 132: 95–100

    PubMed  CAS  Google Scholar 

  • Edwards DJ, Rizk M (1979) Identification and quantification of phenylethylene glycol in human and rat urine, and its elevation in phenylketonuria. Clin Chim Acta 95: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Evans PD (1978) Octopamine: a high-affinity uptake mechanism in the nervous system of the cockroach. J Neurochem 30: 1015–1022

    Article  PubMed  CAS  Google Scholar 

  • Evans PD (1981) Multiple receptor types for octopamine in the locust. J Physiol (Lond) 318: 99–122

    CAS  Google Scholar 

  • Evans PD (1984 a) The Role of cyclic nucleotides and calcium in the mediation of the modulatory effects of octopamine on locust skeletal muscle. J Physiol (Lond) 348:325–340

    Google Scholar 

  • Evans PD (1984b) Studies on the mode of action of octopamine, 5–hydroxytryptamine and proctolin on a myogenic rhythm in the locus. J Exp Biol 110: 231–251

    PubMed  CAS  Google Scholar 

  • Evans PD, Gee JD (1980) Action of formamidine pesticides on octopamine receptors. Nature 287: 60–62

    Article  PubMed  CAS  Google Scholar 

  • Evans PD, O’Shea M (1977) An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature 270: 257–259

    Article  PubMed  CAS  Google Scholar 

  • Evans PD, Talamo BR, Kravitz EA (1975) Octopamine neurons: morphology, release of octopamine and possible physiological Role. Brain Res 90: 340–347

    Article  PubMed  CAS  Google Scholar 

  • Evans PD, Kravitz EA, Talamo BR (1976) Octopamine release at two points along lobster nerve trunks. J Physiol (Lond) 262: 71–89

    CAS  Google Scholar 

  • Evans PD, Kravitz EA, Talamo BR, Wallace BG (1976) The association of octopamine with specific neurons along lobster nerve trunks. J Physiol (Lond) 262: 57–70

    Google Scholar 

  • Farnham PJ, Novak RA, McAdoo DJ (1978) A re-examination of the distributions of octopamine and phenylethanolamine in the aplysia nervous system. J Neuroehem 30: 1173–1176

    Article  CAS  Google Scholar 

  • Fischer JE, Baldessarini RJ (1971) False neurotransmitters and hepatic failure. Lancet ii 75–80

    Google Scholar 

  • Fischer JE, James JH (1972) Treatment of hepatic coma and hepatorenal syndrome. Am J Surg 123: 222–230

    Article  PubMed  CAS  Google Scholar 

  • Flatmark T, Skotland T, Jones T, Ingebretsen OC (1978) Fluorimetric detection of octopamine in high-performance liquid chromatography and its application to the assay of dopamine beta-monooxygenase in human serum. J Chromatogr 146: 433–438

    Article  PubMed  CAS  Google Scholar 

  • Florey E, Rathmayer M (1978) The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: further evidence for a Role as neurohormone. Comp Biochem Physiol [C] 61c: 229–237

    Article  Google Scholar 

  • Fregly MJ, Kelleher DL, Williams CM (1979) Adrenergic activity of ortho-, meta-, and para-octopamine. Pharmacology 18: 180–187

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Grobecker H, Jonsson J (1967) The effect of β-phenylethy lamine on central and peripheral monoamine-containing neurons. Eur J Pharmacol 2: 202–207

    Article  PubMed  CAS  Google Scholar 

  • Fuzeau-Braesch S, Coulon JF, David JC (1979) Octopamine levels during the moult cycle and adult development in the migratory locust, Locusta migratoria. Experientia 15: 1349–1350

    Article  Google Scholar 

  • Glanzman DL, Krasne FB (1983) Serotonin and octopamine have opposite modulatory effects on the crayfish’s lateral giant escape reaction. J Neurosci 3: 2263–2269

    PubMed  CAS  Google Scholar 

  • Harris-Warrick RM, Kravitz EA (1984) Cellular mechanisms for modulation of posture by octopamine and serotonin in the lobster. J Neuroscience 4: 1976–1993

    CAS  Google Scholar 

  • Henwood RW, Boulton AA, Phillis JW (1979) Iontophoretic studies of some trace amines in the mammalian CNS. Brain Res. 164: 347–351

    Article  PubMed  CAS  Google Scholar 

  • Hicks TP, McLennan H (1978) Comparison of the actions of octopamine and catecholamines on single neurones of the rat cerebral cortex. Br J Pharmacol 64: 485–491

    PubMed  CAS  Google Scholar 

  • Hiripi L, Rozsa KS (1984) Octopamine- and dopamine-sensitive adenylate cyclase in the brain of Locusta migratoria during its development. Cell Molec Neurobiol 4: 199–206

    Article  PubMed  CAS  Google Scholar 

  • Horwitz D, Lovenberg W, Engelman K, Sjoerdsma A (1964) Monoamine oxidase inhibitors, tyramine and cheese. J Am Med Assoc 190: 1133–1136

    Google Scholar 

  • Hoyle G (1975) Evidence that insect dorsal unpaired median (DUM) neurons are octopaminergic. J Exp Zool 193: 425–431

    Article  PubMed  CAS  Google Scholar 

  • Hoyle G, Colquhoun W, Williams M (1980) Fine structure of an octopaminergic neuron and its terminals. J Neurobiol 11: 103–126

    Article  PubMed  CAS  Google Scholar 

  • Huang JT, Ho BT (1974) The effect of pretreatment with iproniazid on the behavioral 204 activities of β-phenylethylamine in rats. Psychopharmacologia 35: 71–81

    Article  Google Scholar 

  • Hueber ND, Boulton AA (1979) Longitudinal urinary trace amine excretion in a human male. J Chromatogr. 162: 169–176

    Article  Google Scholar 

  • Ibrahim KE, Couch MW, Williams CM, Fregly MJ, Midgley JM (1985) m-Octopamine: normal occurrence with p-octopamine in mammalian sympathetic nerves. J Neuroehem 44: 1862–1867

    Article  CAS  Google Scholar 

  • Jackson DM, Smythe DB (1973) The distribution of β-phenylethylamine in discrete regions of the rat brain and its effect on brain noradrenaline, dopamine and 5–hydroxytryptamine levels. Neuropharmacology 12: 663–668

    Article  PubMed  CAS  Google Scholar 

  • Jackson DM, Andén NE, Dahlstrom A (1975) A functional effect of dopamine in the nucleus accumbens and in some other dopamine-rich parts of the rat brain. Psy-chopharmacologia 45: 139–149

    CAS  Google Scholar 

  • James JH, Fischer JE (1975) Release of octopamine and a-methyl octopamine by L- DOPA. Biochem Pharmacol 24: 1099–1101

    Article  PubMed  CAS  Google Scholar 

  • James JH, Hodgman JM, Funovics JM, Fischer JE (1975) Alterations in brain octopamine and brain tyrosine following portacaval anastomosis in rats. J Neurochem 27: 223–227

    Article  Google Scholar 

  • James MO, Smith RL (1973) The conjugation of phenylacetic acid in phenylketonurics. Eur J Clin Pharmacol 5: 243–246

    Article  CAS  Google Scholar 

  • Jepson B, Lovenberg W, Zaltman P, Oates S, Sjoerdsma A, Udenfriend S (1960) Amine metabolism studied in normal and Phenylketonurie humans by mono- amineoxidase inhibition. Biochem J 74: 5 P

    Google Scholar 

  • Jonsson J, Grobecker H, Holtz P (1966) Effect of β-phenylethylamine on content and subcellular distribution of norepinephrine in rat heart and brain. Life Sci 5: 2235–2246

    Article  CAS  Google Scholar 

  • Jonsson J, Lindecke B, Cho AK (1975) Oxidation of phenylethylamine yielding tyramine by rat liver microsomes. Acta Pharmacol Toxicol Kbh 37: 352–360

    Article  CAS  Google Scholar 

  • Juorio AV (1976) Presence and metabolism of β-phenylethylamine, p-tyramine, m-tyramine and tryptamine in the brain of the domestic fowl. Brain Res 111: 442–445

    Article  PubMed  CAS  Google Scholar 

  • Juorio AV (1977) Effects of d-amphetamine and antipsychotic drug administration on striatal tyramine levels in the mouse. Brain Res 126: 181–184

    Article  PubMed  CAS  Google Scholar 

  • Juorio AV (1983) The effect of some decarboxylase inhibitors on striatal tyramines in the mouse. Neuropharmacology 22: 71–73

    Article  PubMed  CAS  Google Scholar 

  • Juorio AV, Danielson TJ (1978) Effect of haloperidol and d-amphetamine on cerebral tyramine and octopamine levels. Eur J Pharmacol 50: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Juorio AV, Jones RS (1981) The effect of mesencephalic lesions on tyramine and dopamine in the caudate nucleus of the rat. J Neurochem 36: 1898–1903

    Article  PubMed  CAS  Google Scholar 

  • Juorio AV, Molinoff PB (1974) The normal occurrence of octopamine in neural tissues of the Octopus and other cephalopods. J Neurochem 22: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Juorio AV, Philips SR (1975) Tyramines in octopus nerves. Brain Res 83: 180–184

    Article  CAS  Google Scholar 

  • Kakimoto Y, Armstrong MD (1962a) The phenolic amines of human urine. J Biol Chem 237: 208–214

    PubMed  CAS  Google Scholar 

  • Kakimoto Y, Armstrong MD (1962b) On the identification of octopamine in mammals. J Biol Chem 237: 422–427

    PubMed  CAS  Google Scholar 

  • Karoum F, Gillin JC, Wyatt RJ (1975) Mass fragmentographic determination of some acidic and alcoholic metabolites of biogenic amines in the rat brain. J Neurochem 25: 653–658

    Article  PubMed  CAS  Google Scholar 

  • Kass L, Barlow RB Jr (1984) Efferent neurotransmission of circadian rhythms in Limulus lateral eye. J Neurose 4: 908–917

    CAS  Google Scholar 

  • Kaupp UB, Malbon CC, Batelle BA, Brown JE (1982) Octopamine stimulated rise of cAMP in Limulus ventral photoreceptors. Vision Res 22: 1503–1506

    Article  PubMed  CAS  Google Scholar 

  • King GS, Goodwin BL, Ruthven CRJ, Sandler M (1974) Urinary excretion of o-tyramine. Clin Chim Acta 51: 105–107

    Article  PubMed  CAS  Google Scholar 

  • Klaasen LW, Kammer AE (1985) Octopamine enhances neuromuscular transmission in developing and adult moths, Manduca sexta. J Neurobiol 16: 227–243

    Article  Google Scholar 

  • Konishi S, Kravitz EA (1978) The physiological properties of amine-containing neurones in the lobster nervous system. J Physiol (Lond) 279: 215–229

    CAS  Google Scholar 

  • Kopin IJ (1968) False adrenergic transmitters. Annu Rev Pharmacol 8: 377–394

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Bockaert J (1985) Pharmacological characterization of octopamine- sensitive adenylate cyclase in the flight muscle of Locusta migratoria L. Eur J Pharmacol 119: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Lam KC, Tall AR, Goldstein GB, Mistiiis SP (1973) Role of a false neurotransmitter, octopamine, in the pathogenesis of hepatic and renal encephalopathy. Scand J Gastroenterol 8: 465–472

    PubMed  CAS  Google Scholar 

  • Lange AB, Orchard I (1986) Identified octopaminergic neurons modulate contractions of locust visceral muscle via adenosine 3’, 5’-monophosphate (cyclic AMP). Brain Res 363: 340–349

    Article  PubMed  CAS  Google Scholar 

  • Lemberger L, Klutch A, Kuntzman R (1966) The metabolism of tyramine in rabbits. J Pharmacol Exp Ther 153: 183–190

    CAS  Google Scholar 

  • Lentzen H, Philippu A (1977) Uptake of tyramine into synaptic vesicles of the caudate nucleus. Naunyn Schmiedeberg’s Arch Pharmacol 300: 25–30

    Article  PubMed  CAS  Google Scholar 

  • Levitan IB, Barondes SH (1974) Octopamine- and serotonin-stimulated phosphorylation of specific protein in the abdominal ganglion of Aplysia californica. Proc Natl Acad Sci USA 71: 1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Loo YH, Scotto L, Horning MG (1976) Gas chromatographic determination of aromatic metabolites of phenylalanine in brain. Anal Biochem 76: 111–118

    Article  PubMed  CAS  Google Scholar 

  • Loo YH, Fulton T, Miller K, Wisniewski HM (1980) Phenylacetate and brain dysfunc-tion in experimental phenylketonuria: synaptic development. Life Sci 27: 1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Lovenberg W, Weissbach H, Udenfriend S (1962) Aromatic L-amino acid decarboxylase. J Biol Chem 237: 89–93

    PubMed  CAS  Google Scholar 

  • Mann J, Gershon S (1980) L-deprenyl, a selective monoamine oxidase type-B inhibitor in endogenous depression. Life Sci 17: 877–882

    Article  Google Scholar 

  • Mantegazza P, Riva M (1963) Amphetamine-like activity of β-phenylethylamine after a monoamine oxidase inhibitor in vivo. J Pharm Pharmacol 15: 472–478

    Article  CAS  Google Scholar 

  • McEwen F, Hume A, Hutchinson M, Holland W (1969) The effects of N-methylation on the pharmacological activity of phenethylamine. Arch Int Pharmacodyn 179: 86–93

    PubMed  CAS  Google Scholar 

  • McKean CM (1972) The effects of high phenylalanine concentration on serotonin and catecholamine metabolism in the human brain. Brain Res 47: 469–476

    Article  PubMed  CAS  Google Scholar 

  • Midgley JM, Couch MW, Crowley JR, Williams CM (1980) m-Synephrine: normal occurrence in adrenal gland. J Neurochem 34: 1225–1230

    Article  PubMed  CAS  Google Scholar 

  • Mir AK, Vaughan PFT (1981) Biosynthesis of N-acetyldopamine and N-acetyloctopamine by schistocerca gregaria nervous tissue. J Neurochem 36: 441–446

    Article  PubMed  CAS  Google Scholar 

  • Moffett A, Swash M, Scott DF (1972) Effect of tyramine in migraine: a double blind study. J Neurol Neurosurg Psychiat 35: 496–499

    Article  PubMed  CAS  Google Scholar 

  • Moises HW, Waldmeier P, Beckmann H (1985) Phenylethylamine and personality. In: Boulton AA, Maitre L, Bieck PR, Riederer P, (Eds) Neuropsychopharmacology of the trace amines. Humana Press, Clifton, NJ USA pp 387–394

    Chapter  Google Scholar 

  • Molinoff PB, Axelrod J (1969) Octopamine: normal occurrence in sympathetic nerves of rats. Science 164: 428–429

    Article  PubMed  CAS  Google Scholar 

  • Molinoff PB, Axelrod J (1972) Distribution and turnover of octopamine in tissues. J Neurochem 19: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Molinoff PB, Buck SH (1976) Octopamine: normal occurrence in neuronal tissues of rats and other species. In: Sandler M, Usdin E (Eds) Trace Amines in the Brain. Marcel Dekker, New York pp 131–160

    Google Scholar 

  • Molinoff PB, Landsberg L, Axelrod J (1969) An enzymatic assay for octopamine and other β-hydroxylated phenylethylamines. J Pharmacol Exp Ther 170: 253–261

    PubMed  CAS  Google Scholar 

  • Morton DB (1984) Pharmacology of the octopamine-stimulated adenylate cyclase of the locust and tick CNS. Comp Biochem Physiol 78C: 153–158

    CAS  Google Scholar 

  • Nakajima T, Kakimoto Y, Sano I (1964) Formation of β-phenylethylamine in mammalian tissue and its effect on motor activity in the mouse. J Pharmacol Exp Ther 143: 319–325

    PubMed  CAS  Google Scholar 

  • Nathanson JA (1979) Octopamine receptors, adenosine 3’, 5’-monophosphate, and neural control of firefly flashing. Science 203: 65–68

    Article  PubMed  CAS  Google Scholar 

  • Nathanson JA (1985a) Characterization of octopamine-sensitive adenylate cyclase: elucidation of a class of potent and selective octopamine-2 receptor agonists with toxic effects in insects. Proc Natl Acad Sci USA 82: 599–603

    Article  PubMed  CAS  Google Scholar 

  • Nathanson JA (1985b) Phenyliminoimidazolidines. Characterization of a class of potent agonists of octopamine-sensitive adenylate cyclase and their use in understanding the pharmacology of octopamine receptors. Mol Pharmacol 28: 254–268

    PubMed  CAS  Google Scholar 

  • Nathanson JA, Greengard P (1973) Octopamine-sensitive adenylate cyclase: evidence for a biological Role of octopamine in nervous tissue. Science 189: 308–310

    Article  Google Scholar 

  • Nathanson JA, Hunnicutt EJ (1979) Neural control of light emission in Photuris larvae: identification of octopamine-sensitive adenylate cyclase (1). J Exp Zool 208: 255–262

    Article  PubMed  CAS  Google Scholar 

  • Nathanson JA, Hunnicutt EJ (1981) N-demethylchlordimeform: a potent partial agonist of octopamine-sensitive adenylate cyclase. Mol Pharmacol 20: 68–75

    PubMed  CAS  Google Scholar 

  • Oates JA, Nirenberg PZ, Jepson JB, Sjoerdsma A, Udenfriend S (1963) Conversion of phenylalanine to phenylethylamine in patients with phenylketonuria. Proc Soc Exp Biol 112: 1078–1081

    PubMed  CAS  Google Scholar 

  • Orchard I, Lange AB (1985) Evidence for octopamine modulation of an insect visceral muscle. J Neurobiol 16: 171–181

    Article  PubMed  CAS  Google Scholar 

  • O’Shea M, Evans PD (1979) Potentiation of neuromuscular transmission by an octopaminergic neurone in the locust. J Exp Biol 79: 169–190

    Google Scholar 

  • Perry TL (1962) Urinary excretion of amines in phenylketonuria and mongolism. Science 136: 879–880

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Hestrin M, MacDougall L, Hansen S (1966) Urinary amines of intestinal bacterial origin. Clin Chim Acta 14: 116–123

    Article  PubMed  CAS  Google Scholar 

  • Philips SR, Boulton AA (1979) The effect of monoamine oxidase inhibitors on some arylalkylamines in rat striatum. J Neurochem 33: 159–167

    Article  PubMed  CAS  Google Scholar 

  • Philips SR, Juorio AV (1978) Arylalkylamines in the adrenal medulla. Can J Biochem 56: 1058–1060

    Article  PubMed  CAS  Google Scholar 

  • Philips SR, Burden DA, Boulton AA (1974) Identification and distribution of p-tyramine in the rat. Can J Biochem 52: 366–373

    Article  PubMed  CAS  Google Scholar 

  • Philips SR, Davis BA, Durden DA, Boulton AA (1975) Identification and distribution of m-tyramine in the rat. Can J Biochem 53: 65–69

    Article  PubMed  CAS  Google Scholar 

  • Philips SR, Rozdilsky B, Boulton AA (1978) Evidence for the presence of m-tyramine, tryptamine, and phenylethylamine in the rat brain and several areas of the human brain. Biol Psychiat 13: 51–57

    PubMed  CAS  Google Scholar 

  • Pisano JJ, Oates JA, Karmen A, Sjoerdsma A, Udenfriend S (1961) Identification of p-hydroxy-a-(methylaminomethyl) benzyl alcohol (synephrine) in human urine. J Biol Chem 236: 898–901

    PubMed  CAS  Google Scholar 

  • Potkin SG, Karoum F, Chuang LW, Cannon-Spoor HE, Phillips I, Wyatt RJ (1979) Phenylethylamine in paranoid chronic schizophrenia. Science 206: 470–471

    Article  PubMed  CAS  Google Scholar 

  • Raiteri M, Bertollini A, Levi G (1977) Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. Eur J Pharmacol 41: 133–143

    Article  PubMed  CAS  Google Scholar 

  • Reale V, Evans PD, Villegas J (1986) Octopaminergic modulation of the membrane potential of the Schwann cell of the squid giant nerve fibre. J Exp Biol 121: 421–443

    PubMed  CAS  Google Scholar 

  • Reynolds GP, Riederer P, Sandler M, Jellinger K, Seemann D (1978) Amphetamine and 2–phenylethylamine in post-mortem Parkinsonian brain after (-) deprenyl administration. J Neural Transm 43: 271–277

    Article  PubMed  CAS  Google Scholar 

  • Ross SB, Renyi AL (1971) Uptake and metabolism of β-phenethylamine and tyramine in mouse brain and heart slices. J Pharm Pharmacol 23: 276–279

    Article  PubMed  CAS  Google Scholar 

  • Roth JA, Gillis CN (1974) Deamination of β-phenylethylamine by monoamineoxidase, inhibition by imipramine. Biochem Pharmacol 23: 2537–2545

    Article  PubMed  CAS  Google Scholar 

  • Rutledge CO, Jonason J (1967) Metabolic pathways of dopamine and norepinephrinein rabbit brain in vitro. J Pharmacol Exp Ther 157: 493–502

    PubMed  CAS  Google Scholar 

  • Saavedra JM (1974 a) Enzymatic isotopic assay for and presence of β-phenylethylamine in brain. J Neurochem 22:211–216

    Google Scholar 

  • Saavedra JM (1974 b) Enzymatic-isotopic method for octopamine at the picogram level. Anal Biochem 59:628–633

    Article  Google Scholar 

  • Saavedra JM (1977) Microassay of biogenic amines in neurons of Aplysia: the coexistence of more than one transmitter molecule in a neuron. In: Osborne N (Ed) Biochemistry of Characterized Neurons. Pergamon Press, Elmsford NY, USA pp 217–238

    Google Scholar 

  • Saavedra JM (1978) /β-Phenylethylamine: is this biogenic amine related to neuropsychiatry diseases? In: Moshaim AD, Wolf ME (Eds) Modern Pharmacology-Toxicology, Vol. 12, Noncatecholic Phenylethylamines. Part 1. Phenylethylamine: Biological Mechanisms and Clinical Aspects. Marcel Dekker, New York, pp 139–157

    Google Scholar 

  • Saavedra JM, Axelrod J (1973) Demonstration and distribution of phenylethanolamine in brain and other tissues. Proc Natl Acad Sci USA 70: 769–772

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM, Axelrod J (1976) Octopamine as a putative neurotransmitter. In: Costa E, Giacobini E, Paoletti R (Eds) Advances in Biochemical Psychopharmacology, Vol. 15 Raven Press, New York, pp 95–110

    Google Scholar 

  • Saavedra JM, Coyle JT, Axelrod J (1973) The distribution and properties of the nonspecific N-methyltransferase in brain. J Neurochem 20: 743–752

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM, Brownstein MJ, Carpenter DO, Axelrod J (1974a) Octopamine: presence in single neurons of Aplysia suggests neurotransmitter function. Science 185: 364–365

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM, Coyle JT, Axelrod J (1974 b) Developmental characteristics of phenylethanolamine and octopamine in the rat brain. J Neurochem 23: 511–515

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM, Palkovits M, Brownstein MJ, Axelrod J (1974c) Localization of phenylethanolamine N-methyl transferase in the rat brain nuclei. Nature 248: 695–696

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM, Ribas J, Swann J, Carpenter DO (1977) Phenylethanolamine: a new putative transmitter in Aplysia. Science 195: 1004–1006

    Article  PubMed  CAS  Google Scholar 

  • Sandler M, Bonham Carter S, Goodwin BL, Ruthven CRJ (1976) Trace amine metabolism in man. In: Usdin E, Sandler M (Eds) Trace Amines and the Brain. Marcel Dekker, New York, pp 233–281

    Google Scholar 

  • Sandler M, Ruthven CR, Goodwin GL, Field H, Matthews R (1978 a) Phenylethylamine overproduction in aggressive psychopaths. Lancet 2: 1269–1270

    Article  PubMed  CAS  Google Scholar 

  • Sandler M, Ruthven CR, Goodwin BL, King GS, Pettit BR, Renyolds GP, Tyrer SP, Weller MP, Hirsch SR (1978b) Raised cerebrospinal fluid phenylacetic acid concentration: preliminary support for the phenylethylamine hypothesis of schizophrenia? Commun Psychopharmacol 2: 199–202

    PubMed  CAS  Google Scholar 

  • Sandler M, Ruthven CR, Goodwin BL, Coppen A (1979) Decreased cerebrospinal fluid concentration of free phenylacetic acid in depressive illness. Clin Chim Acta 93: 169–171

    Article  PubMed  CAS  Google Scholar 

  • Sandler M, Ruthven CR, Goodwin BL, Lees A, Stern GM (1982) Phenylacetic acid in human body fluids: high correlation between plasma and cerebrospinal fluid con-centration values. J Neurol Neurosurg Psychiat 45: 366–368

    Article  PubMed  CAS  Google Scholar 

  • Sastry BSR, Philis JW (1977) Antagonism of biogenic amine-induced depression of cerebral cortical neurons by Na+-K+-ATPase inhibitors. Can J Physiol Pharmacol 55: 170–179

    Article  PubMed  CAS  Google Scholar 

  • Schaefer A, Unyi G, Pfeifer AK (1972) The effects of a soluble factor and of catechol-amines on the activity of adenosine triphosphatase in subcellar fractions of rat brain. Biochem Pharmacol 21: 2289–2294

    Article  PubMed  CAS  Google Scholar 

  • Scheline R, Williams R, Wit J (1960) Biological dehydroxylation. Nature 188:849–850 Schofield PK, Treherne JE (1985) Octopamine reduces potassium permeability of the glia that form the insect blood-brain barrier. Brain Res 360: 344–348

    Google Scholar 

  • Schramm M, Feinstein H, Nairn E, Lang M, Lasser M (1972) Epinephrine binding to the catecholamine receptor and activation of the adenylate cyclase in erythrocyte membranes. Proc Natl Acad Sci USA 69: 523–527

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer JW, Friedhoff AJ (1978) A critique of current methods for the analysis of phenethylamine in biological media. In: Mosnaim AD, Wolf ME (Eds) Noncatechol Phenylethylamines, part 1. Phenylethylamine: Biological Mechanisms and Clinical Aspects. Marcel Dekker, New York, pp 475–488

    Google Scholar 

  • Schweitzer JW, Friedhoff AJ, Schwartz R (1975) Phenethylamine in normal urine: failure to verify high values. Biol Psychiat 10: 277–285

    PubMed  CAS  Google Scholar 

  • Shalita B, Dikstein S (1977) Central tyramine prevents hypertension in uninephrec-tomized DOCA-saline treated rats. Experientia 33: 1430–1431

    Article  PubMed  CAS  Google Scholar 

  • Slingsby JM, Boulton AA (1976) Separation and quantitation of some urinary arylal-kylamines. J Chromatogr 123: 51–56

    Article  PubMed  CAS  Google Scholar 

  • Smith AA, Fabrykant M, Kaplan M, Gavitt J (1964) Dehydroxylation of some catecholamines and their products. Biochim Biophys Acta 86: 429–437

    Article  PubMed  CAS  Google Scholar 

  • Smith I, Mitchell PD (1974) The effect or oral inorganic sulphate on the metabolism of 4-hydroxyphenethylamine (tyramine) in man: tyramine o-sulphate measurement in human urine. Biochem J 142: 189–191

    PubMed  CAS  Google Scholar 

  • Stoof JC, Liem AL, Mulder AH (1976) Release and receptor stimulating properties of p-tyramines in rat brain. Arch Int Pharmacodyn 220: 62–71

    PubMed  CAS  Google Scholar 

  • Tacker M, Mclsaac WM, Creaven PJ (1970) Metabolism of tyramine-1–14C by the rat. Biochem Pharmacol 19: 2763–2773

    Article  PubMed  CAS  Google Scholar 

  • Tallman JF, Saavedra JM, Axelrod J (1976a) A sensitive enzymatic-isotopic method for the analysis of tyramine in brain and other tissues. J Neurochem 27: 465–469

    Article  PubMed  CAS  Google Scholar 

  • Tallman JF, Saavedra JM, Axelrod J (1976b) Biosynthesis and metabolism of endogenous tyramine and its normal presence in sympathetic nerves. J Pharmacol Exp Ther 199: 216–221

    PubMed  CAS  Google Scholar 

  • Tong JH, Smyth RG, D’lorio A (1979) Metabolism of m-tyrosine in the rat. Biochem Pharmacol 28: 1029–1036

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1972) Classification of sympathomimetic amines. In: Blaschko H, Muscholl E (Eds) Catecholamines. (Handbook of Experimental Pharmacology, vol 33 ) Springer-Verlag, Berlin, Heidelberg, New York pp 336–362

    Google Scholar 

  • Ungar F, Mosnaim AD, Ungar B, Wolf ME (1978) Preliminary studies of the sodium borohydride stabilizable binding of phenylethylamine and tyramine to brain preparations. Res Commun Chem Pathol Pharmacol 19: 427–434

    PubMed  CAS  Google Scholar 

  • U’Prichard DC, Greenberg DA, Snyder SH (1977) Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol Pharmacol 13: 454–473

    PubMed  Google Scholar 

  • Wallace BG (1976) The biosynthesis of octopamine-characterization of lobster tyr-amine β-hydroxylase. J Neurochem 26: 761–770

    Article  PubMed  CAS  Google Scholar 

  • Wallace BG, Talamo BR, Evans PD, Kravitz EA (1974) Octopamine: selective association with specific neurons in the lobster nerve system. Brain Res 74: 349–355

    Article  PubMed  CAS  Google Scholar 

  • Williams CM, Couch MW (1978) Identification of ortho-octopamine and meta-octopamine in mammalian adrenal and salivary gland. Life Sci 22: 2213–2120

    Article  Google Scholar 

  • Willner J, Lefevre H, Costa E (1974) Assay by multiple ion detection of β-phenylethylamine and phenylethanolamine in rat brain. J Neurochem 23: 857–859

    Article  CAS  Google Scholar 

  • Woodruff GN (1978) Biochemical and pharmacological studies on dopamine receptors. Adv Biochem Psychopharmacol 19: 89–118

    PubMed  CAS  Google Scholar 

  • Wu PH, Boulton AA (1974) Distribution, metabolism and disappearance of intraventricularly injected p-tyramine in the rat. Can J Biochem 52: 374–381

    Article  PubMed  CAS  Google Scholar 

  • Wu PH, Boulton AA (1975) Metabolism, distribution and disappearance of injected p-phenylethylamine in the rat. Can J Biochem 53: 42–50

    Article  PubMed  CAS  Google Scholar 

  • Wu PH, Boulton AA (1979) N-Acylation of tyramines: purification and characterization of an arylamine N-acetyltransferase from rat brain and liver. Can J Biochem 57: 1204–1209

    Article  Google Scholar 

  • Yang HYT, Neff NH (1973) β-Phenylethylamine: a specific substrate for type B monoamineoxidase in brain. J Pharmacol Exp Ther 187: 365–371

    PubMed  CAS  Google Scholar 

  • Yang HYT, Neff NH (1976) Brain N-acetyltransferase: substrate specificity, distribution and comparison with enzyme activity from other tissues. Neuropharmacology 15: 561–564

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saavedra, J.M. (1989). β-Phenylethylamine, Phenylethanolamine, Tyramine and Octopamine. In: Trendelenburg, U., Weiner, N. (eds) Catecholamines II. Handbook of Experimental Pharmacology, vol 90 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73551-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73551-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73553-0

  • Online ISBN: 978-3-642-73551-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics