Skip to main content

Catecholamines and Behavior

  • Chapter
Catecholamines II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 90 / 2))

Abstract

Research on the neural function of catecholamines spans all levels of active investigation from the molecular to the behavioral. In this chapter we consider the behavioral actions of catecholamines and their related drugs in respect to the molecular actions, cellular structure, and the behavioral repertoire of central catecholamine neurons. Each of these aspects of central catecholamine neurons is an extensive independent body of research. However, we emphasize evidence for the relationships between the molecular level and the behavioral level. We first review those aspects of cellular structure and receptor mechanisms which are essential to an integrative assessment of function for the dopamine and noradrenaline systems. We next analyse the central dopaminergic neurons and the results of experimental perturbations on their actions, indicating the general gaps and overlaps in these studies. We conclude by considering the behavioral implications of the electrophysiological properties of noradrenergic neurons in awake, behaving animals in order to develop a basis on which to evaluate the behavioral effects of drugs and lesions which alter the function of the noradrenergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

E. References

  • Aebischer P, Schultz W (1984) The activity of pars compacta neurons of the monkey substantia nigra is depressed by apomorphine. Neurosci Lett 50: 25–29

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK (1978) Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature 276: 186–188

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK, Cedarbaum JM, Wang RY (1977) Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res 136: 570–577

    Article  PubMed  CAS  Google Scholar 

  • Ahlskog JE (1974) Food intake and amphetamine anorexia after selective forebrain norepinephrine loss. Brain Res 82: 211–240

    Article  PubMed  CAS  Google Scholar 

  • Ahlskog JE, Hoebel BG (1973) Overeating and obesity from damage to a noradrenergic system in the brain. Science 182: 166–169

    Article  PubMed  CAS  Google Scholar 

  • Ahlskog JE, Randall DI, Hoebel BG (1975) Hypothalamic hyperphagia: dissociation from hyperphagia following destruction of noradrenergic neurons. Science 190: 399–401

    Article  PubMed  CAS  Google Scholar 

  • Ajika K, Hokfelt T (1973) Ultrastructural identification of catecholamine neurones in the hypothalamus periventricular-arcuate nucleus-median eminence complex with special reference to quantitative aspects. Brain Res 57: 97–117

    Article  PubMed  CAS  Google Scholar 

  • Akasu T, Koketsu K (1977) Effects of dibutyryl cyclic adenosine 3’,5’-monophosphate and theophylline on the bullfrog sympathetic ganglion. Br J Pharmacol 60: 331–336

    PubMed  CAS  Google Scholar 

  • Amalric M, Koob GF (1987) Depletion of dopamine in the caudate nucleus but not nucleus accumbens impairs reaction time performance in rats. J Neuroscience, in press

    Google Scholar 

  • Amaral DG, Foss JA (1975) Locus coeruleus and learning. Science 188: 377–378

    Article  PubMed  CAS  Google Scholar 

  • Amsler C (1923) Uber einige Wirkungen des Apomorphins. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmacol 97: 14

    Google Scholar 

  • Anlezark GM, Grow TJ, Greenway AP (1973) Impaired learning and decreased cortical norepinephrine after bilateral locus coeruleus lesions. Science 181: 582–684

    Article  Google Scholar 

  • Antelman SM, Szechtman H (1975) Tail-pinch induces eating in sated rats which appears to depend on nigrostriatal dopamine. Science 189: 731–733

    Article  PubMed  CAS  Google Scholar 

  • Arbuthnott GW (1974) Spontaneous activity of single units in the striatum after unilateral destruction of the dopamine input. J Physiol (Lond) 239: 121–122

    Google Scholar 

  • Arluison M, Agid Y, Javoy F (1978 a) Dopaminergic nerve endings in the neostriatum of the rat. I. Identification by intracerebral injections of 5-hydroxydopamine. Neurosci 3: 657–673

    Article  CAS  Google Scholar 

  • Arluison M, Agid Y, Javoy F ( 1978 b) Dopaminergic nerve endings in the neostriatum of the rat. 2. Radioautographic study following local microinjections of tritiated dopamine. Neurosci 3: 675–684

    Article  CAS  Google Scholar 

  • Asher IM, Aghajanian GK (1974) 6-Hydroxydopamine lesions of olfactory tubercles and caudate nuclei: effect on amphetamine-induced stereotyped behavior in rats. Brain Res 82: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Bloom FE (1981a) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1: 876–886

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Bloom FE (1981b) Norepinephrine-containing locus coeruleus neu- F. E. BLOOM et al. rons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosei 1: 887–900

    CAS  Google Scholar 

  • Aston-Jones G, Ennis M, Pieribone VA, Nickell W, Thompson, Shipley MT (1986) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234: 734–737

    Article  PubMed  CAS  Google Scholar 

  • Barchas JD, Freedman DX (1963) Brain amines: response to physiological stress. Biochem Pharmacol 12: 1232–1235

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Kelly JS (1976) Dopamine-evoked inhibition of single cells of the feline putamen and basolateral amygdala. J Physiol (Lond) 256: 1–21

    CAS  Google Scholar 

  • Beninger RJ, Mason ST, Phillips AG, Fibiger HC (1980) The use of conditioned suppression to evaluate the nature of neuRoleptic induced avoidance deficits. J Pharmacol Exp Ther 213: 623–627

    PubMed  CAS  Google Scholar 

  • Bevan JA (1977) Some functional consequences of variation in adrenergic synaptic cleft width and in nerve density and distribution. Fed Proc 36: 2439–2443

    PubMed  CAS  Google Scholar 

  • Bird SJ, Kuhar MJ (1977) Iontophoretic application of opiates to the locus coeruleus. Brain Res 122: 523–533

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund A, Lindvall O (1986) Catecholaminergic brain stem regulatory systems. In: Bloom FE (ed) Handbook of Physiology, Amer. Physiol. Soc. vol. IV. Bethesda, Maryland, pp 155–236

    Google Scholar 

  • Bliss EL, Ailion J (1969) Response of neurogenic amines to aggregation and strangers. J Pharmacol Exp Ther 168: 258–263

    PubMed  CAS  Google Scholar 

  • Bliss EL, Ailion J, Zwanziger J (1968) Metabolism of norepinephrine, serotonin and dopamine in rat brain with stress. J Pharmacol Exp Ther 164: 122–134

    PubMed  CAS  Google Scholar 

  • Bloom FE (1973) Ultrastructural identification of catecholamine-containing central synaptic terminals. J Histochem Cytochem 21: 333–348

    Article  PubMed  CAS  Google Scholar 

  • Bloom FE (1975 a) Amine receptors in CNS: I. Norepinephrine. In: Iversen LL, Iversen SD, Snyder SH (Eds) Handbook of Psychopharmacology. Raven Press, New York, pp 1–22

    Google Scholar 

  • Bloom FE (1975 b) The Role of cyclic nucleotides in central synaptic function. Rev Phys B 74:1103–103

    Google Scholar 

  • Bloom FE (1975 c) Monoaminergic neurotoxins: are they selective? J Neural Trans 37:183–187

    Article  Google Scholar 

  • Bloom FE (1988) Neurotransmitters: past, present and future directions. FASEB J. 2: 32–41

    PubMed  CAS  Google Scholar 

  • Bloom FE, Battenberg ELF (1976) A rapid, simple and more sensitive method for the demonstration of central catecholamine-containing neurons and axons by glyoxylic acid induced fluorescence: II. A detailed description of methodology. J Histochem Cytochem 24: 651–671

    Article  Google Scholar 

  • Bloom FE, von Baumgarten R, Oliver AP, Costa E, and Salmoiraghi GC (1964) Micro- electrophoretic studies on adrenergic mechanisms of rabbit olfactory bulb neurons. Life Sci 3: 131–136

    Article  PubMed  CAS  Google Scholar 

  • Bloom FE, Costa E, Salmoiraghi GC (1965) Anesthesia and the responsiveness of individual neurons of the cat’s caudate nucleus to acetylcholine, norepinephrine, and dopamine administered by microelectrophoresis. J Pharmacol Exp Ther 150: 244–252

    PubMed  CAS  Google Scholar 

  • Bloom FE, Hoffer BJ, Siggins GR (1971) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their syn-apses. Brain Res 25: 501–521

    Article  PubMed  CAS  Google Scholar 

  • Bloom F, Battenberg E, Rossier J, Ling N, Guillemin R (1978) Neurons containing endorphin in rat brain exist separatly from those containing enkephalin: immuno- cytochemical studies. Proc Natl Acad Sci USA 75: 1591–1595

    Article  PubMed  CAS  Google Scholar 

  • Booth DA (1967) Localization of the adrenergic feeding system in the rat diencephalon. Science 158: 515–517

    Article  PubMed  CAS  Google Scholar 

  • Booth DA (1968) Mechanism of action of norepinephrine in eliciting an eating response on injection into the rat hypothalamus. J Pharmacol Exp Ther 160: 336–348

    PubMed  CAS  Google Scholar 

  • Bradshaw CM, Szabadi E, Roberts MHT (1973) Kinetics of the release of noradrenaline from micropipettes: interaction between ejecting and retaining currents. Br J Pharmacol 49: 667–677

    PubMed  CAS  Google Scholar 

  • Breese GR, Howard J, Leaky P (1971) Effect of 6-hydroxydopamine on electrical self-stimulation of brain. Brit J Pharmacol 43: 255–257

    CAS  Google Scholar 

  • Britton DR, Ksir C, Thatcher Britton K, Young D, Koob GF (1984) Brain norepinephrine depleting lesions selectively enhance behavioral responsiveness to novelty. Physiol Behav 33: 473–478

    Article  PubMed  CAS  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficits caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205: 929–932

    Article  PubMed  CAS  Google Scholar 

  • Bunney BS, Aghajanian GK (1973) Electrophysiological effects of amphetamine in dopaminergic neurons. In: Usdin E, Snyder S (Eds) Frontiers in Catecholamine Research. Pergamon Press, Oxford, pp 957–962

    Google Scholar 

  • Bunney BS, Aghajanian GK (1977) Studies on cerebral cortex neurons. In Costa E, Trabucchi M, Gessa GL (Eds) Pharmacology of Non-striatal Dopaminergic Neurons. Raven Press New York, pp 65–70

    Google Scholar 

  • Busis NA, Weight FF, Smith PA (1978) Synaptic potentials in sympathetic ganglia: are they mediated by cyclic nucleotides? Science 200: 1079–1081

    Article  PubMed  CAS  Google Scholar 

  • Carey RJ (1980) Anticholinergic drugs promote recovery from self-stimulation deficits produced by bilateral but not unilateral dopamine lesions. Neurosci Abstr 6: 368

    Google Scholar 

  • Carli M, Everden JL, Robbins TW (1985) Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature 313: 679–682

    Article  PubMed  CAS  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1976) Noradrenergic neurons of the locus coeruleus: inhibition by epinephrine and activation by the alpha-antagonist piperoxane. Brain Res 112: 413–4190t

    Article  PubMed  CAS  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1978) Activation of locus coeruleus neurons by peripheral stimuli: modulation by a collateral inhibitory mechanism. Life Sci 23: 1383–1392

    Article  PubMed  CAS  Google Scholar 

  • Cesar PM, Hague P, Sharman DF, Werdinius (1974) Studies on the metabolism of catecholamines in the central nervous system of the mouse. Br J Pharmacol 51: 187–195

    Google Scholar 

  • Chu N-S, Bloom FE (1973) Norepinephrine-containing neurons: Changes in spontaneous discharge patterns during sleeping and waking. Science 179: 908–910

    Article  PubMed  CAS  Google Scholar 

  • Chu N-S, Bloom FE (1974) Activity patterns of catecholamine-containing pontine neurons in the dorso-lateral tegmentum of unrestrained cats. J Neurobiol 5: 527–544

    Article  PubMed  CAS  Google Scholar 

  • Clavier RM, Fibiger HC (1977) On the Role of ascending catecholaminergic projec-tions in intracranial self-stimulation of the substantia nigra. Brain Res 131: 271 - 286

    Article  PubMed  CAS  Google Scholar 

  • Clavier RM, Routtenberg A (1976) Brain stem self-stimulation attenuated by lesions of the medial forebrain bundle but not by lesions of the brain stem norepinephrine systems. Brain Res 101: 251–272

    Article  PubMed  CAS  Google Scholar 

  • Clavier RM, Fibiger HC, Phillips AG (1976) Evidence that self-stimulation of the region of the locus coeruleus in rats does not depend upon noradrenergic projections to telencephalon. Brain Res 113: 71–81

    Article  PubMed  CAS  Google Scholar 

  • Clavier RM, Gerfen CR, Henkelman DH (1980) The contribution of nigral efferents to substantia nigra self-stimulation. Neurosci Abstr 6: 422

    Google Scholar 

  • Cole BJ, Robbins TW (1987) Dissociable effects of cortical and hypothalamic noradrenaline depletion on the acquisition, performance, and extinction of aversive conditioning. Behavioral Neuroscience, 101: 476–488

    Article  PubMed  CAS  Google Scholar 

  • Conner JD (1968) Caudate unit responses to nigral stimuli: evidence for a possible ni-gro-neostriatal pathway. Science 160: 899–900

    Article  Google Scholar 

  • Conner JD (1970) Caudate nucleus neurones: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine. J Physiol (Lond) 208: 691–703

    Google Scholar 

  • Conrad LCA, Pfaff DW ( 1976 a) Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area. J Comp Neurol 167: 185–220

    Google Scholar 

  • Conrad LCA, Pfaff DW ( 1976 b) Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol 167: 221–262

    Google Scholar 

  • Cook L, Kelleher RT (1963) Effects of drugs on behavior. A Rev. Pharmacol 3:205–222

    Google Scholar 

  • Cook L, Sepinwall J (1975) Behavioral analysis of the effects and mechanisms of action of benzodiazepines. In: Costa E, Greengard P (Eds) Mechanism of Action of Benzodiazepines. Raven New York, pp 1–28

    Google Scholar 

  • Cooper BR, Breese GR, Grant LD, Howard JL (1973) Effects of 6-hydroxydopamine treatments on active avoidance responding: evidence for involvement of brain dopamine. J Pharmacol Exp Ther 185: 358–370

    PubMed  CAS  Google Scholar 

  • Cooper BR, Cott JM, Breese GR (1974) Effects of catecholamine depleting drugs and amphetamine on self-stimulation of the brain following various 6-hydroxydopamine treatments. Psychopharmacologia 37: 235–248

    Article  PubMed  CAS  Google Scholar 

  • Cooper BR, Konkol RJ, Breese GR (1978) Effects of catecholamine depleting drugs and d-amphetamine on self-stimulation of the substantia nigra and locus coeruleus. J Pharmacol Exp Ther 204: 592–605

    PubMed  CAS  Google Scholar 

  • Corbett D, Wise RA (1980) Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: a moveable electrode mapping study. Brain Res 185: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Corbett D, Skelton RW, Wise, RA (1977) Dorsal bundle lesions fail to disrupt self-sti-mulation from the region of locus coeruleus. Brain Res 133: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Coury JN (1967) Neural correlates of food and water intake in the rat. Science 156: 1763–1764

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Molliver ME (1977) Major innervation of newborn rat cortex by monoaminergic neurons. Science 196: 444–447

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Iversen SD (1973) Blockade of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine. Brain Res 55: 369–382

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Iversen SD (1974) The Role of forebrain dopamine systems in amphetamine induced stereotyped behavior in the rat. Psychopharmacologia 39: 345–357

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ (1968) Cortical synapses and reinforcement: A hypothesis. Nature 219: 736–737

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ, Arbuthnott GW (1972) Function of catecholamine-containing neurones in mammalian central nervous system. Nature 238: 245–246

    CAS  Google Scholar 

  • Crow TJ, Wendlandt S (1976) Impaired acquisition of a passive avoidance response after lesions induced in the locus coeruleus by 6-OH dopamine. Nature 259: 42–44

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ, Deakin JFW, File SE, Longdon A, Wendlandt S (1978) The locus coeruleus noradrenergic system-evidence against a Role in attention, habituation, anxiety and motor activity. Brain Res 155: 249–261

    Article  PubMed  CAS  Google Scholar 

  • Crowley WR, Feder HH, Morin LP (1976) Role of monoamines in sexual behavior of the female guinea pig. Pharmacol Biochem Behav 4: 67–71

    Article  PubMed  CAS  Google Scholar 

  • Crowley WR, Rodriguez-Sierra JF, Komisaruk BR (1977) Monoamine mediation of the antinociceptive effect of vaginal stimulation in rats. Brain Res 137: 67–84

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrôm A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 62 (232):l–55

    Google Scholar 

  • Davis JR, Keesey RE (1971) Norepinephrine-induced eating-its hypothalamic locus and an alternative interpretation of action. J Comp Physiol 77: 394–402

    CAS  Google Scholar 

  • Delacour J, Echavarria MJ, Senault B, Houcine O (1977) Specificity of avoidance deficits produced by 6-hydroxydopamine lesions of the nigrostriatal system of the rat. J Comp Physiol Psychol 91: 875–885

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Lapierre Y (1973) Noradrenergic axon terminals in the cerebral cortex of rat. I. Radioautographic visualization after topical application of DL-(3H)-norepin- ephrine. Brain Res 51: 141–160

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Watkins KC, Lapierre Y (1977) Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis. Brain Res 133: 197–222

    Google Scholar 

  • Dismukes RK (1979) New concepts of molecular communication among neurons. The Behav and Brain Sci 2: 409–448

    Article  Google Scholar 

  • Dray A, Gonye TJ, Oakley NR (1976) Caudate stimulation and substantia nigra activity in the rat. J Physiol (London) 259: 825–849

    CAS  Google Scholar 

  • Dresse A (1966) Influence de 15 neuRoleptiques (butyrophenones et phenothiazines) sur les variations de la teneur du cerveau en noradrenaline et activité du rat dans le test d’autostimulation. Arch int Pharmacodyn 159: 353–365

    PubMed  CAS  Google Scholar 

  • Dun JN, Kaibara K, Karczmar AG (1977) Dopamine and adenosine 3’,5’-monophosphate responses of single mammalian sympathetic neurons. Science 197: 778–788

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The Cerebellum as a Neuronal Machine. Springer, New York

    Google Scholar 

  • Echavarria-Mage MT, Senault B, Delacour J (1972) Effets de microinjections de 6-hy- droxydopamine dans le système nigro-strié sur un aprentissage chez la rat blanc. Comptes-Rendus de l’Academie des Sciences 275: 1155–1158

    CAS  Google Scholar 

  • Edwards SB (1975) Autoradiographic studies of the projections of the midbrain reticular formation: descending projections of nucleus cuneiformis. J Comp Neurol 162: 341–358

    Article  Google Scholar 

  • Ettenberg A, Cinsavich SA, White N (1979) Performance effects with repeated-re- sponse measures during pimozide-produced dopamine receptor blockade. Pharmacol Biochem Behav 11: 557–561

    Article  PubMed  CAS  Google Scholar 

  • Ettenberg A, Koob GF, Bloom FE (1981) Response artifact in the measurement of neuRoleptic-induced anhedonia. Science 213: 357–359

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Fuxe K, Hôkfelt T, Jonsson G (1975) Role of monoamines in the control by hormones of sexual receptivity in the female rat. J Comp Physiol Psychol 89: 556–572

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Robbins TW, Gaskin M, Fray PJ (1983) The effects of lesions to ascending noradrenergic neurons on discrimination learning and performance. Neuroscience 10: 397–410

    Article  PubMed  CAS  Google Scholar 

  • Fadda F, Argiolas A, Melis ME, Tissary AM, Onali PL, Gessa GL (1978) Stress-induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in N. accumbens: reversal by diazepam. Life Sci 23: 2219–2224

    CAS  Google Scholar 

  • Faiers AA, Mogenson GJ (1976) Electrophysiological identification of neurons in locus coeruleus. Exptl Neurol 53: 254–266

    Article  CAS  Google Scholar 

  • Fallon JH, Moore RY (1976 a) Catecholamine neurons innervation of the rat amygdala. Anat Rec 184:399

    Google Scholar 

  • Fallon JH, Moore RY (1976 b) Dopamine innervation of some basal forebrain areas in the rat. Neurosci Abstr 2: 486

    Google Scholar 

  • Feltz P (1971) Sensitivity to haloperidol of caudate neurones excited by nigral stimulation. Eur J Pharmacol 14: 360–364

    Article  PubMed  CAS  Google Scholar 

  • Feltz P, de Champlain J (1972) Enhanced sensitivity of caudate neurons to microion- tophoretic injections of dopamine in 6-hydroxydopamine treated cats. Brain Res 43: 601–605

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC (1978) Drugs and reinforcement mechanisms: a critical review of the cate-cholamine theory. Ann Rev Pharmacol 18: 37–56

    Article  CAS  Google Scholar 

  • Fibiger HC, Fibiger HP, Zis AP (1973 a) Attenuation of amphetamine induced motor stimulation and stereotypy by 6-hydroxydopamine in the rat. Brit J Pharmacol 4: 683–692

    Google Scholar 

  • Fibiger HC, Zis AP, Mcgeer EG (1973 b) Feeding and drinking deficits after 6-hydro-xydopamine administration in the rat: similarities to the lateral hypothalamic syndrome. Brain Res 55: 135–148

    Google Scholar 

  • Fibiger HC, Phillips AG, Zis AP (1974) Deficits in instrumental responding after 6-hydroxydopamine lesions of the nigro-neostriatal dopaminergic projection. Pharmacol Biochem Behav 2: 87–96

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC, Zis AP, Phillips AG (1975) Haloperidol-induced disruption of conditioned avoidance responding: attenuation by prior training or by anticholinergic drugs. Eur J Pharmacol 30: 309–314

    Article  PubMed  CAS  Google Scholar 

  • File SE, Deakin JFW, Longden A, Crow TJ (1979) An investigation of the Role of the locus coeruleus in anxiety and agonistic behavior. Brain Res 169: 411–420

    Article  PubMed  CAS  Google Scholar 

  • Fink JS, Smith GP (1979) Decreased locomotor and investigatory exploration after denervation of catecholamine terminal fields in the forebrain of rats. J Comp Physiol Psychol 43: 34–65

    Article  Google Scholar 

  • Flicker C, McCarley RW, Hobson JA (1981) Aminergic neurons: state control and plasticity in three model systems. J Cell Molec Neurobiol 1: 123–166

    Article  CAS  Google Scholar 

  • Fog R, Pakkenberg H (1971) Behavioral effects of dopamine and p-hydroxyamphetamine injected into corpus striatum of rats. Exper Neurol 31: 75–86

    Article  CAS  Google Scholar 

  • Fog RL, Randrup A, Pakkenberg H (1967) Aminergic mechanisms in corpus striatum and amphetamine-induced stereotyped behavior. Psychopharm 11: 179–183

    Article  CAS  Google Scholar 

  • Fog RL, Randrup A, Pakkenberg H (1968) NeuRoleptic action of quaternary chlorpro- mazine and related drugs injected into various brain areas in rats. Psychopharm 12: 428–432

    Article  CAS  Google Scholar 

  • Fog RL, Randrup A, Pakkenberg H (1970) Lesions in corpus striatum and cortex of rat brain and the effect on pharmacologically induced stereotyped, aggressive and cataleptic behavior. Psychopharm 18: 346–350

    Article  CAS  Google Scholar 

  • Foote SL, Freedman R, Oliver AP (1975) Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Res 86: 229–242

    Article  PubMed  CAS  Google Scholar 

  • Foote SL, Aston-Jones G, Bloom FE (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci USA 77: 3033–3037

    Article  PubMed  CAS  Google Scholar 

  • Foote SL, Bloom FE, Aston-Jones G (1983) The nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiol Reviews, 63: 844–914

    CAS  Google Scholar 

  • Fouriezos G, Wise RA (1976) Pimozide-induced extinction of intracranial self-stimulation: response patterns rule out motor or performance deficits. Brain Res 103: 377–380

    Article  PubMed  CAS  Google Scholar 

  • Franklin KB J, McCoy SN (1979) Pimozide-induced extinction in rats; stimulus control of responding rules out motor deficit. Pharmacol Biochem Behav 11: 71–75

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Hoffer BJ (1975) Phenothiazine antagonism of the noradrenergic inhibition of cerebellar Purkinje neurons. J Neurobiol 6: 277–288

    Article  PubMed  CAS  Google Scholar 

  • Freedman RJ, Hoffer BJ, Woodward DJ (1975) A quantitative microiontophoretic an- Catecholamines and Behavior alysis of the responses of central neurones to noradrenaline interactions with cobalt, manganese, verapamil and dichloroisoprenaline. J Pharmacol 54: 529–539

    CAS  Google Scholar 

  • Freedman R, Hoffer BJ, Woodward DJ, Puro D (1977) A functional Role for the adrenergic input to the cerebellar cortex: interaction of norepinephrine with activity evoked by mossy and climbing fibers. Exp Neurol 55: 269–288

    Article  PubMed  CAS  Google Scholar 

  • Frigyesi TL, Purpura DP (1967) Electrophysiological analysis of reciprocal caudate-ni-gral relations. Brain Res 6: 440–456

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Hokfelt T, Nilsson O (1964) Observations on the localization of dopamine in the caudate nucleus of the rat. Z Zellforsch Mikrosk Anat 63: 701–706

    Article  PubMed  CAS  Google Scholar 

  • Gahwiler BH (1976) Inhibitory action of noradrenaline and cyclic AMP in explants of rat cerebellum. Nature 259: 483–484

    Article  PubMed  CAS  Google Scholar 

  • Galey D, Jaffard R, Le Moal M (1976) Spontaneous alternation disturbance after lesions of the ventral mesencephalic tegmentum in the rat. Neurosci Lett 3: 65–69

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JP, Shinnick-Gallagher P (1977) Cyclic nucleotides injected intracellular into rat superior cervical ganglion cells. Science 198: 851–852

    Article  PubMed  CAS  Google Scholar 

  • Geller HM, Hoffer BJ (1977) Effect of calcium removal on monoamine-elicited depressions of cultured tuberal neurons. J Neurobiol 8: 43–55

    Article  PubMed  CAS  Google Scholar 

  • Geller I, Seifter J (1960) The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia 1: 482–492

    Article  CAS  Google Scholar 

  • Gerfen CR, Clavier RM, Henkelman DH (1981) Intracrania self-stimulation from the sulcal prefrontal cortex in the rat: the effect of 6-hydroxydopamine or kainic acid lesion at the site of stimulation. Brain Research 774: 791–304

    Google Scholar 

  • German DC, Bowden DM (1974) Catecholamine systems as the neural substrate for in-tracranial self-stimulation: a hypthesis. Brain Res 73: 381–419

    Article  PubMed  CAS  Google Scholar 

  • German DC, Fetz EE (1976) Responses of primate locus coeruleus and subcoeruleus neurons to stimulation at reinforcing brain sites and to natural reinforcers. Brain Res 109: 497–514

    Article  PubMed  CAS  Google Scholar 

  • Glowinski J (1979) Some properties of the ascending dopaminergic pathways: interactions of the nigrostriatal dopaminergic system with other neuronal pathways. In Schmitt FO, Worden FG (Eds) The Neurosciences Fourth Study Program. Cambridge MIT Press, pp 1069–1083

    Google Scholar 

  • Glowinski J, Axelrod J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. Effects of drugs on the disposition and metabolism of 3H-norepinephrine and 3H-dopamine. J Pharmacol Exp Ther 153: 30–41

    PubMed  CAS  Google Scholar 

  • Gold RM, Jones AP, Sawchenko PE, Kapatos G (1977) Paraventricular area: critical focus of a longitudinal neurocircuitry mediating food intake. Physiol Behav 18: 1111–1119

    Article  PubMed  CAS  Google Scholar 

  • Gold MS, Pottash ALC, Extein I (1982) Clonidine: inpatient studies from 1978–1981. J Clinical Psychiat 43: 35–38

    CAS  Google Scholar 

  • Gonzalez-Vegas J A (1974) Antagonism of dopamine-mediated inhibition in the nigro striatal pathway: modes of action of some catatonic-inducing drugs. Brain Res 80: 219–228

    Article  PubMed  CAS  Google Scholar 

  • Gordon R, Spector S, Sjoerdsma A, Udenfriend S (1966) Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold J Pharmacol Exp Ther 153: 440–447

    CAS  Google Scholar 

  • Graham AW, Aghajanian GK (1971) Effects of amphetamine on single cell activity in a catecholamine nucleus, the locus coeruleus. Nature 234: 100–102

    Article  PubMed  CAS  Google Scholar 

  • Gray T, Wise RA (1980) Effect of pimozide on lever pressing behavior maintained on an intermittent reinforcement schedule. Pharmacol Biochem Behav 12: 931–935

    Article  PubMed  CAS  Google Scholar 

  • Greengard P (1978) Cyclic Nucleotides, Phosphorylated Proteins, and Neuronal Function.

    Google Scholar 

  • Grillo MA (1966) Electron microscopy of sympathetic tissues. Pharmacol Rev 18: 387–400

    PubMed  CAS  Google Scholar 

  • Grossman SP (1960) Eating or drinking elicited by direct adrenergic or cholinergic sti-mulation of hypothalamus. Science 132: 301–302

    Article  PubMed  CAS  Google Scholar 

  • Grossman SP (1962 a) Direct adrenergic and cholinergic stimulation of hypothalamic mechanisms. Am J Physiol 202:872–882

    Google Scholar 

  • Grossman SP (1962 b) Effects of adrenergic and cholinergic blocking agents on hypothalamic mechanisms. Am J Physiol 202:1230–1236

    Google Scholar 

  • Groves PM (1983) A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Res Reviews 5: 109–132

    Article  Google Scholar 

  • Groves PM, Wilson CJ (1980) Monoaminergic presynaptic axons and dendrites in rat locus coeruleus seen in reconstructions of serial sections. J Comp Neurol 193: 853–862

    Article  PubMed  CAS  Google Scholar 

  • Grzanna R, Morrison JH, Coyle JT, Molliver ME (1977) The immunohistochemical demonstration of noradrenergic neurons in the rat brain: the use of homologous antiserum to dopamines-hydroxylase. Neurosci Letters 4: 127–134

    Article  CAS  Google Scholar 

  • Guyenet PG, Aghajanian GK (1977) Excitation of neurons in the nucleus locus coeruleus by substance P and related peptides. Brain Res 136: 178–184

    Article  PubMed  CAS  Google Scholar 

  • Hansen S, Stanfield EJ, Everitt BJ (1980) The Role of ventral bundle noradrenergic neurones in sensory components of sexual behavior and coitus-induced pseudo- pregnancy. Nature 286: 152–154

    Article  PubMed  CAS  Google Scholar 

  • Hansen S, Stanfield EJ, Everitt BJ (1981) The effects of lesions of lateral tegmental noradrenergic neurons on components of sexual behavior and pseudopregnancy in female rats. Neurosci 6: 1105–1117

    Article  CAS  Google Scholar 

  • Hartline HK, Ratliff F (1957) Inhibitory interaction of receptor units in the eye of Limulus. J Gen Physiol 40: 357–376

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Fibiger HC, McGeer PL, Maler L (1973) Analysis of the fine structure of the dopaminergic nigrostriatal projection by electron microscopic autoradiography. Exp Neurol 41: 599–611

    Article  PubMed  CAS  Google Scholar 

  • Hernandez L, Hoebel BG (1982) Overeating after midbrain 6-hydroxydopamine: prevention by central injection of catecholamine reuptake blockers. Brain Res 245: 333 - 343

    Article  PubMed  CAS  Google Scholar 

  • Herz A (1960) Drugs and the conditioned avoidance response. Int Rev Neurobiol 2: 229–277

    Article  PubMed  CAS  Google Scholar 

  • Herz A, Zieglgänsberger W (1968) The influence of microelectrophoretically applied biogenic amines, cholinomimetics and procaine on synaptic excitation in the corpus striatum. Int J Neuropharmacol 7: 221–230

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AW, Ranson SW (1940) Hypothalamic lesion and adiposity in the rat. Anat Ree 78: 149–172

    Article  Google Scholar 

  • Hoebel BG, Leibowitz SF (1981) Brain monoamines in the modulation of self-stimula¬tion feeding and body weight. In Weiner H, Hofer MA, Stunkard AJ (Eds) Brain Behavior and Bodily Disease. Raven Press, New York, pp 103–142

    Google Scholar 

  • Hoffer BJ, Siggins GR, Bloom FE (1969) Prostaglandins El E2 antagonize norepinephrine effects on cerebellar Purkinje cells: microelectrophoretic study. Science 166: 1418–1420

    Article  PubMed  CAS  Google Scholar 

  • Hoffer BJ, Siggins GR, Bloom FE (1971a) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res 25: 523–534

    Google Scholar 

  • Hoffer BJ, Siggins GR, Woodward DJ, Bloom FE (1971b) Spontaneous discharge of Purkinje neurons after destruction of catecholamine-containing afferents by 6-hy- droxydopamine. Brain Res 30: 425–430

    Article  PubMed  CAS  Google Scholar 

  • Hoffer BJ, Siggins GR, Oliver AP, Bloom FE (1973) Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence of noradrenergic central inhibition. J Pharmacol Exp Ther 184: 553–569

    PubMed  CAS  Google Scholar 

  • Hoffer B, Olson L, Seiger A, Bloom F (1975) Formation of a functional adrenergic input to intra-ocular cerebellar grafts: ingrowth of inhibitory sympathetic fibers. J Neurobiol 6: 565–585

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T, (1968) In vitro studies on central and peripheral monoamine neurons at the ultrastructural level. Z Zellforsch 91: 1–74

    Article  PubMed  Google Scholar 

  • Hökfelt T, Ungerstedt U (1969) Electron and fluorescence microscopical studies on the nucleus caudatus putamen of the rat after unilateral lesions of nigro-neostriatal dopamine neurons. Acta Physiol Scand 76: 415–426

    Article  PubMed  Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M, Johansson O (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66: 235–251

    Article  Google Scholar 

  • Hökfelt T, Eide R, Johansson O, Ljungdahl A, Schultzberg N, Fuxe K, Goldstein M, Nilsson G, Pernow B, Terenius L, Ganten D, Jeffcote FL, Rehfeld J, Faid S (1978) The distribution of peptide containing neurons in the CNS. In: Lipton MA, Killam KF, Dimasio A (Eds) Psychopharmacology—A Generation of Progress, Raven Press, New York, pp 39–66

    Google Scholar 

  • Hull CD, Levine MS, Buchwald NA, Heller A, Browning RA (1974) The spontaneous firing pattern of forebrain neurons. I. The effects of dopamine and non-dopamine depleting lesions on caudate unit firing patterns. Brain Res 73: 241–262

    Google Scholar 

  • Ibata Y, Nojyo Y, Matsuura T, Sano Y (1973) Nigro-neostriatal projection. Z Zell-forsch Mikrosk Anat 138: 333–344

    Article  CAS  Google Scholar 

  • Iversen LL (1975) Dopamine receptors in the brain. Science 188: 1084–1089

    Article  PubMed  CAS  Google Scholar 

  • Iversen SD, Koob GF (1977) Behavioral implications of dopaminergic neurons in the mesolimbic system. In E Costa, GL Gessa (Eds) Nonstriatal Dopamine Mechanisms, Adv Biochem Psychopharmacol, Raven, New York

    Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Schellekens KHL, Dresse A, Lenaerts FM, Pinchard A, Schaper WKA, van Nueten JM, Verbruggen FJ (1968) Pimozide, a chemically novel, highly potent and orally long-acting neuRoleptic drug. Arzneimittel-Forschung 18: 261–279

    PubMed  CAS  Google Scholar 

  • Jones BE, Moore RY (1974) Catecholamine-containing neurons of the nucleus locus coeruleus in the cat. J Comp Neur 157: 43–52

    Article  PubMed  CAS  Google Scholar 

  • Joyce EM, Koob GF (1981) Amphetamine-, scopolamine- and caffeine-induced locomotor activity following 6-hydroxydopamine lesions of the mesolimbic dopamine system. Psychopharmacol 73: 311–313

    Article  CAS  Google Scholar 

  • Joyce EM, Iversen SD (1978) The effect of 6-hydroxydopamine lesions to mesolimbic dopamine terminals on spontaneous behaviour in the rat. Neuroscience Letters Suppl 2: 289

    Google Scholar 

  • Kandel ER, Klein M, Bailey CH, Hawkins RD, Castellucci VF, Lubit BW, Schwartz JH (1981) Serotonin, cyclic AMP, and the modulation of the calcium current during behavioral arousal. In: Jacobs BL, Gelperin A (Eds) Serotonin Neurotransmission and Behavior. Cambridge, MIT Press pp 211–254

    Google Scholar 

  • Kebabian JW, Calne CB (1979) Multiple receptors for dopamine. Nature 277: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Kelly PH, Iversen SD (1976) Selective 6-OHDA induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant induced locomotor activity in rats. Eur J Pharmacol 40: 45–56

    Article  PubMed  CAS  Google Scholar 

  • Kelly PH, Moore KE (1976) Mesolimbic dopaminergic neurons in the rotational model of nigrostriatal function. Nature 263: 695–696

    Article  PubMed  CAS  Google Scholar 

  • Kelly PH, Seviour P, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94: 507–522

    Article  PubMed  CAS  Google Scholar 

  • Kety SS (1970) The biogenic amines in the central nervous system: their possible Roles in arousal, emotion and learning. In: Schmitt FO (Ed) The Neurosciences: Second Study Program. Rockefeller University Press, New York pp 324–336

    Google Scholar 

  • Kitai ST, Wagner A, Precht W, Ohno T (1975) Nigro-caudate and caudatonigral relationship: an electrophysiological study. Brain Res 85: 44–48

    Article  PubMed  CAS  Google Scholar 

  • Kitai ST, Sugimori M, Kocsis JC (1976) Excitatory nature of dopamine in the nigrocaudate pathway. Exp Brain Res 24: 351–363

    PubMed  CAS  Google Scholar 

  • Klein M, Kandel ER (1978) Presynaptic modulation of voltage-dependent Ca++ current: mechanism for behavioral sensitization in Aplysia californica. Proc Natl Acad Sci USA 75: 3512–3516

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Hashiguchi T, Ushiyama NS (1978) Postsynaptic modulation of excit-atory process in sympathetic ganglia by cyclic AMP. Nature 271: 268–270

    Article  PubMed  CAS  Google Scholar 

  • Koda LY, Bloom FE (1977) A light and electron microscopic study of noradrenergic terminals in the rat dentate gyrus. Brain Res 120: 327–335

    Article  PubMed  CAS  Google Scholar 

  • Koda LY, Wise RA, Bloom FE (1978 a) Light and electron microscopic changes in the rat dentate gyrus after lesions or stimulation of the ascending locus coeruleus pathway. Brain Res 144: 363–368

    Article  PubMed  CAS  Google Scholar 

  • Koda LY, Schulman JA, Bloom FE (1978 b) Ultrastructural identification of noradrenergic terminals in the rat hippocampus: unilateral destruction of the locus coeruleus with 6-hydroxydopamine. Brain Res 145: 190–195

    Article  PubMed  CAS  Google Scholar 

  • Koda LY, Aston-Jones G, Bloom FE (1980) Small granular vesicles in the locus coeruleus may indicate dendritic release of norepinephrine. Soc Neurosci Abstr 6: 446

    Google Scholar 

  • Koob GF, Annau Z (1974) Behavioral and neurochemical alterations induced by hypoxia in rats. Am J Physiol 227: 73–78

    PubMed  CAS  Google Scholar 

  • Koob GF, Balcom GJ, Meyerhoff JL (1976) Increases in intracranial self-stimulation in the posterior hypothalamus following unilateral lesions in the locus coeruleus. Brain Res 101: 554–560

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Riley SJ, Smith SC, Robbins TW (1978 a) Effects of 6-hydroxydopamine of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity and amphetamine anorexia in the rat. J Comp Physiol Psychol 92: 917–927

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Fray PJ, Iversen SD (1978 b) Self-stimulation at the lateral hypothalamus and locus coeruleus after specific unilateral lesions of the dopamine system. Brain Res 146: 123–140

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Kelley AE, Mason ST (1978 c) Locus coeruleus lesions: learning and extinction. Physiol Behav 20: 709–716

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Stinus L, Le Moal M (1981) Hyperactivity and hypoactivity produced by lesions to the mesolimbic dopamine system. Behavioural Brain Res 3: 341–359

    Article  CAS  Google Scholar 

  • Koob GF, Thatcher-Britton K, Britton D, Roberts DCS, Bloom FE (1984 a) Destruction of the locus coeruleus or the dorsal noradrenergic bundle does not alter the release of punished responding by ethanol and chlordiazepoxide. Physiol Behav 33: 479–485

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Simon H, Herman JP, Le Moal M (1984 b) NeuRoleptic-like disruption of the conditioned avoidance response requires destruction of both the mesolimbic and nigro-striatal dopamine systems. Brain Res 303: 319–329

    Article  PubMed  CAS  Google Scholar 

  • Korf J, Aghajanian GK, Roth RH (1973) Increased turnover of norepinephrine in the rat cerebral cortex during stress: Role of the locus coeruleus. Neuropharmacol 12: 933–938

    Article  CAS  Google Scholar 

  • Korf J, Bunney BS, Aghajanian GK (1974) Noradrenergic neurons: morphine inhibition of spontaneous activity. Eur J Pharmacol 25: 165–169

    Article  PubMed  CAS  Google Scholar 

  • Landis SC, Bloom FE (1975) Ultrastructural identification of noradrenergic boutons in mutant and normal mouse cerebellar cortex. Brain Res 96: 299–305

    Article  PubMed  CAS  Google Scholar 

  • Lapierre Y, Beaudet A, Demianczuk N, Descarries L (1973) Noradrenergic axon terminals in the cerebral cortex of rat. II. Quantitative data revealed by light and electron microscope autoradiography of the frontal cortex. Brain Res 63: 175–182

    Google Scholar 

  • Lavielle S, Tassin JP, Theirry AM, Blanc G, Herve D, Barthelemy C, Glowinski J (1979) Blockade by benzodiazepines of the selective high increase in DA turnover induced by stress in mesocortical dopaminergic neurons of the rat. Brain Res 168: 585–594

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz SF (1970) Reciprocal hunger-regulating circuits involving alpha- and beta- adrenergic receptors located, respectively, in the ventromedial and lateral hypothal-amus. Proc Natl Acad Sci USA 67: 1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz SF (1978 a) Paraventricular nucleus: A primary site mediating adrenergic stimulation of feeding and drinking. Pharmacol Biochem Behav 8: 163–175

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz SF (1978 b) Adrenergic stimulation of the paraventricular nucleus and its effects on ingestive behavior as a function of drug rise and time injection in the light-dark cycle. Brain Res Bull 3:357–363

    Article  Google Scholar 

  • Leibowitz SF, Brown LL (1980) Histochemical and pharmacological analysis of cate- cholaminergic projections to the perifornical hypothalamus in relation to feeding inhibition. Brain Res 201: 289–314

    Article  PubMed  CAS  Google Scholar 

  • Le Moal M, Cardo B, Stinus L (1969) Influence of ventral mesencephalic lesions on various spontaneous and conditioned behaviors in the rat. Physiol Behav 4: 567–572

    Article  Google Scholar 

  • Le Moal M, Galey D, Cardo B (1975) Behavioral effects of local injections of 6-hydroxydopamine in the medial tegmentum in the rat. Possible Role of the meso- limbic dopaminergic system. Brain Res 88: 190–194

    Article  PubMed  Google Scholar 

  • Le Moal M, Stinus L, Simon H, Tassin JP, Thierry AM, Blanc G, Glowinski J, Cardo B (1977) Behavioral effects of a lesion in the ventral mesencephalic tegmentum: evidence for involvement of A10 dopaminergic neurons. In: Costa E, Gessa GL (Eds) Nonstriatal Dopaminergic Neurons. Adv Biochem Psychopharmacol 16: 237–245

    Google Scholar 

  • Levitan IB, Norman J (1980) Different effects of cAMP and cGMP derivatives on the activity of an identified neuron: biochemical and electrophysiological analysis. Brain Res 187: 415–429

    Article  PubMed  CAS  Google Scholar 

  • Liebman JM, Butcher LL (1974) Comparative involvement of dopamine and noradrenaline in rate-free self-stimulation in substantia nigra, lateral hypothalamus and mesencephalic central gray. Naunyn-Schmiedeberg’s Arch Pharmacol 284: 167–194

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O (1975) Mesencephalic dopaminergic afferents to the lateral septal nucleus of the rat. Brain Res 87: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O, Bjorklund A (1978) Organization of catecholamine neurons in the rat central nervous system. In Iversen L, Iversen S, Snyder SH (Eds) Handbook of Psycho- pharmacology vol 9. Plenum Press, New York Lindvall O, Bjorklund A, Moore RY, Steveni U (1974 a) Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81: 325–331

    Google Scholar 

  • Lindvall O, Bjorklund A, Nobin A, Stenevi U (1974b) The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method. J Comp Neurol 154: 317–348

    Article  PubMed  CAS  Google Scholar 

  • Lippa AS, Antelman SM, Fisher AE, Canfield DR (1973) Neurochemical mediation of reward: a significant Role for dopamine? Pharmacol Biochem Behav 1: 23–28

    Article  PubMed  CAS  Google Scholar 

  • Loughlin SE, Foote SL, Bloom FE (1986 a) Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience 18: 291–306

    Article  PubMed  CAS  Google Scholar 

  • Loughlin SE, Foote SL, Grzanna R ( 1986 b) Efferent projections of nucleus locus coerleus: Morphologic subpopulations have different efferent targets. Neuroscience 18: 307–319

    Article  PubMed  CAS  Google Scholar 

  • Lyness WH, Friedle NM, Moore KE (1979) Destruction of dopaminergic nerve terminals in nucleus accumbens: effect on d-amphetamine, self-administration. Pharmacol Biochem Behav 11: 553–556

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc Natl Acad Sci USA 78: 6535–6539

    Article  PubMed  CAS  Google Scholar 

  • Margules DL (1969) Noradrenergic synapses for the suppression of feeding behavior. Life Sci 8: 693–704

    Article  PubMed  CAS  Google Scholar 

  • Margules DL (1970) Alpha-adrenergic receptors in hypothalamus for the suppression of feeding behavior by satiety. J Comp Physiol Psychol 73: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Marshall KC, Engberg I (1979) Reversal potential for noradrenaline-induced hyperpo-larization of spinal motoneurons. Science 205: 422–424

    Article  PubMed  CAS  Google Scholar 

  • Marshall, JF, Teitelbaum PA (1973) Comparison of the eating in response to hypothermic and glucoprivic challenges after nigral 6-hydroxydopamine and lateral hypothalamic electrolytic lesions in rats. Brain Res 55: 229–233

    Article  PubMed  CAS  Google Scholar 

  • Marshall JF, Richardson JS, Teitelbaum P (1974) Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J Comp Physiol Psychol 87: 808–830

    Article  PubMed  CAS  Google Scholar 

  • Mason ST (1980) Noradrenaline and selective attention: a review of the model and the evidence. Life Sci 27: 627–631

    Article  Google Scholar 

  • Mason ST, Fibiger HC (1978) Evidence for a Role of brain noradrenaline in attention and stimulus sampling. Brain Res 159: 421–426

    Article  PubMed  CAS  Google Scholar 

  • Mason ST, Fibiger HC (1979) Regional topography within noradrenergic locus coeruleus as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 187: 703–724

    Article  PubMed  CAS  Google Scholar 

  • Mason ST, Iversen SD (1975) Learning in the absence of forebrain noradrenaline. Nature 258: 422–424

    Article  PubMed  CAS  Google Scholar 

  • Mason ST, Iversen SD (1979) Theories of the dorsal bundle extinction effect. Brain Res Dev 1: 107–137

    Article  Google Scholar 

  • Mason ST, Roberts DCS, Fibiger HC (1978) Noradrenaline and neophobia. Physiol Behav 21: 353–361

    Article  PubMed  CAS  Google Scholar 

  • Mason ST, Beninger RJ, Fibiger HC, Phillips AG (1980) Pimozide-induced suppression of responding: evidence against a block of food reward. Pharmac Biochem Behav 12: 917–923

    Article  CAS  Google Scholar 

  • Matthews JW, Booth DA, Stolerman IP (1978) Factors influencing feeding elicited by intracranial noradrenaline in rats. Brain Res 141: 119–128

    Article  PubMed  CAS  Google Scholar 

  • Maynert EW, Levi R (1964) Stress-induced release of brain norepinephrine and its inhibition by drugs. J Pharmacol Exp Ther 143: 90–95

    PubMed  CAS  Google Scholar 

  • McAfee DA, Schorderet M, Greengard, P (1971) Adenosine 3’,5’-monophosphate in nervous tissue: increase associated with synaptic transmission. Science 171: 1156–1158

    Article  PubMed  CAS  Google Scholar 

  • McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189: 58–60

    Article  PubMed  CAS  Google Scholar 

  • McGeer EG, Hattori T, McGeer PL (1975) Electron microscopic localization of labeled norepinephrine transported in nigrostriatal neurons. Brain Res 86: 478–482

    Article  PubMed  CAS  Google Scholar 

  • McLennan H, York DH (1967) The action of dopamine on neurons of the caudate nucleus. J Physiol (London) 189: 393 - 402

    CAS  Google Scholar 

  • Miller RE, Murphy JV, Minsky IA (1957) The effect of chlorpromazine on fear-motivated behavior in rats. J Pharmacol Exp Ther 120: 379–387

    PubMed  CAS  Google Scholar 

  • Miller NE, Gottesman KS, Emery N (1964) Dose response to carbachol and norepin-ephrine in rat hypothalamus. Am J Physiol 206: 1384 - 1388

    PubMed  CAS  Google Scholar 

  • Mitchell MJ, Wright AK, Arbuthnott GW (1981) The Role of dopamine in pontine intracranial self-stimulation: a re-examination of the problem. Neurosci Letters 26: 169–175

    Article  CAS  Google Scholar 

  • Mittleman G, Valenstein ES (1982) Mesostriatal dopamine systems and eating and drinking evoked by hypothalamic stimulation: differences between the dominant and non-dominant hemispheres. Neurosci Abstr 8: 894

    Google Scholar 

  • Moisés HC, Woodward DJ (1980) Potention of GABA inhibitory action in cerebellum by locus coeruleus stimulation. Brain Res 182: 327–344

    Article  PubMed  Google Scholar 

  • Moisés HC, Waterhouse BD, Woodward DJ (1981) Locus coeruleus stimulation potentiates Purkinje cell responses to afferent input: the climbing fiber system. Brain Res 222: 43–64

    Article  PubMed  Google Scholar 

  • Moller-Nielsen I, Pedersen V, Nymark M, Franck KF, Boeck V, Fjalland B, Christsen AV (1973) The comparative pharmacology of flupenthixol and some reference neu-Roleptics. Acta Pharmacol et Toxicol 33: 353–362

    Article  Google Scholar 

  • Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Ann Rev Neurosci 1: 129–169

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Ann Rev Neurosci 2: 113–168

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Bhatnagar RK, Heller A (1971) Anatomical and chemical studies of a ni-gro-neostriatal projection in the cat. Brain Res 30: 119–135

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Foote SL (1986) Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys. J Comp. Neurol 243: 117–138

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Grzanna R, Molliver ME, Coyle JT (1978) The distribution and orientation of noradrenergic fibers in neocortex of the rat: an immunofluorescence study. J Comp Neur 181: 17–40

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Foote SL, Molliver ME, Bloom FE, Lidov HGW (1982 a) Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: an immunohistochemical study. Proc Natl Acad Sci USA 79: 2401–2405

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Foote SL, O’Connor D, Bloom FE (1982 b) Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: dopamines-hydroxylase immunohistochemistry. Brain Res Bull 9: 309–319

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Iwama K (1975) Antidromic activation of the rat locus coeruleus neurons from hippocampus, cerebral and cerebellar cortices. Brain Res 99: 372–376

    Article  PubMed  CAS  Google Scholar 

  • Nathanson JA (1977) Cyclic nucleotides and nervous system function. Physiol Rev 57: 157–256

    PubMed  CAS  Google Scholar 

  • Naylor RJ, Olley JE (1972) Modification of the behavioral changes induced by am-phetamine in the rat by lesions in the caudate nucleus, the caudate-putamen and globus pallidus. Neuropharmacol 11: 91–99

    Article  CAS  Google Scholar 

  • Neill DB, Bogan WO, Grossman SP (1974) Impairment of avoidance performance by intrastriatal administration of 6-OHDA. Pharmacol Biochem Behav 2: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon A, Cheramy A, Glowinski J (1977) Release of dopamine from terminals and dendrites of the two nigrostriatal dopaminergic pathways in response to unilateral sensory stimuli in the cat. Nature 269: 340–341

    Article  PubMed  CAS  Google Scholar 

  • Nishi S, Soeda H, Koketsu K (1965) Studies in sympathetic B and C neurons and patterns of preganglionic innervation. J Cell Comp Physiol 66: 19–32

    Article  CAS  Google Scholar 

  • Nybáck HV, Walters JR, Aghajanian GK, Roth RH (1975) Tricyclic antidepressants: effects on the firing rate of brain noradrenergic neurons. Eur J Pharmacol 32: 302–312

    Article  PubMed  Google Scholar 

  • Obata K, Yoshida M (1973) Caudate-evoked inhibition and actions of GABA and other substances on cat pallidal neurons. Brain Res 64: 455–459

    Article  PubMed  CAS  Google Scholar 

  • Oke AF, Adams RN (1978) Selective attention dysfunctions in adult rats neonatally treated with 6-hydroxydopamine. Pharmacol Biochem Behav 9: 429–432

    Article  PubMed  CAS  Google Scholar 

  • Oliver AP, Segal M (1974) Transmembrane changes in hippocampal neurons: hyperpo- larizing actions of norepinephrine, cyclic AMP, and locus coeruleus. Soc Neurosci Abstr 4: 361

    Google Scholar 

  • Olschowska JA, Grzanna R, Molliver ME (1980) The distribution and incidence of synaptic contacts of noradrenergic varicosities in the rat neocortex: an immunocytochemical study. Soc Neurosci Abstr 6: 352

    Google Scholar 

  • Olschowska JA, Molliver ME, Grzanna R, Rice FL, Coyle JT (1981) Ultrastructural demonstration of noradrenergic synapses in the rat central nervous system by dopamines-hydroxylase immunocytochemistry. J Histochem Cytochem 29: 271–280

    Article  Google Scholar 

  • Olson L, Seiger A (1972) Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat EntwGesch 137: 301–316

    Article  CAS  Google Scholar 

  • Oltmas GA, Lorden JF, Margules DL (1977) Food intake and body weight: effects of specific and non-specific lesions in the midbrain path of the ascending noradrenergic neurons of the rat. Brain Res 128: 293–308

    Article  Google Scholar 

  • Ornstein D, Huston JP (1975) Influence of 6-hydroxydopamine injections in the substantia nigra on lateral hypothalamic reinforcement. Neuroscience Lett 116: 339–342

    Article  Google Scholar 

  • Palacios JM, Kuhar MJ (1980) Beta-adrenergic-receptor localization by light microscopic autoradiography. Science 208: 1378–1380

    Article  PubMed  CAS  Google Scholar 

  • Phillips AG, (1984) Brain reward circuitry: the case for separate systems. Brain Res Bull 12: 195–201

    Article  PubMed  CAS  Google Scholar 

  • Phillips AG, Fibiger HC (1978) The Role of dopamine in maintaining intracranial self- stimulation in the ventral tegmentum, nucleus accumbens and medial prefrontal cortex. Canad J Psychol 32: 58–66

    Article  PubMed  CAS  Google Scholar 

  • Phillips AG, Brooke SM, Fibiger HC (1975) Effects of amphetamine isomers and neuRoleptics on self-stimulation from the nucleus accumbens and dorsal noradrenergic bundle. Brain Res 85: 13–22

    Article  PubMed  CAS  Google Scholar 

  • Phillips AG, Carter DA, Fibiger HC (1976) Dopaminergic substrates of intracranial self-stimulation in the caudate-putamen. Brain Res 104: 221–222

    Article  PubMed  CAS  Google Scholar 

  • Phillips AG, van der Kooy D, Fibiger HC (1977) Maintenance of intracranial self-stimulation in hippocampus and olfactory bulb following depletion of noradrenaline. Neurosci Lett 4: 77–84

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Lake N, Yarbrough G (1973) Calcium mediation of the inhibitory effects of biogenic amines on cerebral cortical neurones. Brain Res 53: 465–469

    Article  PubMed  CAS  Google Scholar 

  • Pickel VM, Joh TH, Reis DJ (1977) A serotonergic innervation of noradrenergic neurons in nucleus locus coeruleus: demonstration by immunocytochemical localization of the transmitter specific enzymes tyrosine and tryptophan hydroxylase. Brain Res 131: 197–214

    Article  PubMed  CAS  Google Scholar 

  • Pierce ET, Foote WE, Hobson J A (1976) The efferent connection of the nucleus raphe dorsalis. Brain Res 107: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Pijnenburg AJJ, van Rossum JM (1973) Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J Pharm Pharmacol 25: 1003–1005

    Article  PubMed  CAS  Google Scholar 

  • Pijnenburg AJJ, Woodruff GN, van Rossum JM (1973) Ergometrine induced locomotor activity following intracerebral injection into the nucleus accumbens. Brain Res 59: 289–302

    Article  PubMed  CAS  Google Scholar 

  • Pijnenburg AJJ, Honig WMM, van der Heyden JAM, van Rossum JM (1976) Effects of Catecholamines and Behavior chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur J Pharmacol 35: 45–58

    Article  PubMed  CAS  Google Scholar 

  • Pisa M, Fibiger HC (1983 a) Evidence against a Role of the rat’s dorsal noradrenergic bundle in selective attention and place memory. Brain Res 272: 319–329

    Article  PubMed  CAS  Google Scholar 

  • Pisa M, Fibiger HC (1983 b) Intact selective attention in rats with lesions of the dorsal noradrenergic bundle. Behavioral Neuroscience 97: 519–529

    Article  PubMed  CAS  Google Scholar 

  • Posluns D (1962) An analysis of chlorpromazine-induced suppression of the avoidance response. Psychopharmacologia 3: 361–373

    Article  PubMed  CAS  Google Scholar 

  • Price MTC, Fibiger HC (1975) Discriminated escape learning and response to electric shock after 6-hydroxydopamine lesions of the nigro-neostriatal dopaminergic projection. Pharmacol Biochem Behav 3: 285–290

    Article  PubMed  CAS  Google Scholar 

  • Rail TW (1972) Role of adenosine 3’,5’-monophosphate (cyclic AMP) in actions of catecholamines. Pharmacol Rev 24: 399–409

    Google Scholar 

  • Randrup A, Munkvad I (1960) Role of catecholamines in the amphetamine excitatory response. Nature 211: 540

    Article  Google Scholar 

  • Ranje C, Ungerstedt U (1977) Lack of acquistion in dopamine denervated animals tested in our underwater Y-maze. Brain Res 134: 95–111

    Article  PubMed  CAS  Google Scholar 

  • Redmond DE (1977) Alterations in the function of the nucleus locus coeruleus: a possible model for studies of anxiety in aninal models. In: Usdin E, Hanin I (Eds) Psychiatry and Neurology. Pergamon, New York pp 293–305

    Google Scholar 

  • Redmond DE, JR, Huang YH, Snyder DR, Maas JW (1976) Behavioral effects of stimulation of the locus coeruleus in the stump tail monkey ( Macaca arctoides ). Brain Res 116: 502–510

    Article  PubMed  Google Scholar 

  • Redmond DE, Huang YH (1979) New evidence for a locus coeruleus-norepinephrine connection with anxiety. Life Sci 25: 2149–2162

    Article  PubMed  CAS  Google Scholar 

  • Risner ME, Jones BE (1976) Role of noradrenergic and dopaminergic processes in amphetamine self-administration. Pharmacol Biochem Behav 5: 477–482

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1982) Functional studies of the central catecholamines. In: International Review of Neurobiology, Vol 23, Academic Press, Inc, pp 303–365

    Google Scholar 

  • Robbins TW, Koob GF (1980) Selective disruption of displacement behavioral by lesions of the mesolimbic dopamine system. Nature 285: 409–412

    Article  PubMed  CAS  Google Scholar 

  • Roberts DCS, Zis AP, Fibiger HC (1975) Ascending catecholamine pathways and amphetamine induced locomotor activity: importance of dopamine and apparent non- involvement of norepinephrine. Brain Res 93: 441–454

    Article  PubMed  CAS  Google Scholar 

  • Roberts DCS, Price MTC, Fibiger HC (1976) The dorsal tegmental noradrenergic projection: analysis of its Role in maze learning. J Comp Physiol Psychol 90: 363–372

    Article  PubMed  CAS  Google Scholar 

  • Roberts DCS, Corcoran ME, Fibiger HC (1977) On the Role of ascending catechol-amine systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6: 615–620

    Article  PubMed  CAS  Google Scholar 

  • Roberts DCS, Koob GF, Klonoff P, Fibiger HC (1980) Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol Biochem Behav 12: 781–787

    Article  PubMed  CAS  Google Scholar 

  • Robison GA, Butcher RW, Sutherland EW (1971) Cyclic AMP. Academic Press, New York London

    Google Scholar 

  • Rogawski MA, Aghajanian GK (1980) Activation of lateral geniculate neurons by norepinephrine: mediation by an α-adrenergic receptor. Brain Res 182: 345–359

    Article  PubMed  CAS  Google Scholar 

  • Rolls ET, Kelly PH, Shaw SG (1974) Noradrenaline dopamine and brain stimulation reward. Pharmacol Biochem Behav 2: 735–740

    Article  PubMed  CAS  Google Scholar 

  • Sakai K (1980) Some anatomical and physiological properties of pontomesencephalic tegmental neurons with special reference to the PGO waves and postural atonia during paradoxical sleep in the cat. In: Hobson J, Brazier M (Eds) The Reticular System Revisited. Raven Press, New York, pp 427–448

    Google Scholar 

  • Sakai K, Touret M, Salvert D, Leger L, Jouvet M (1977) Afferent projection to the cat locus coeruleus as visualized by the horseradish peroxidase technique. Brain Res 119: 21–41

    Article  PubMed  CAS  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1976) The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J Comp Neur 169: 409–442

    Article  PubMed  CAS  Google Scholar 

  • Sasa M, Munekiyo K, Takaoir S (1974) Impairment by 6-hydroxydopamine of locus coeruleus-induced monosynaptic potential in the spinal trigeminal nucleus. Jap J Pharmacol 24: 863–868

    Article  PubMed  CAS  Google Scholar 

  • Sasa M, Igarashi S, Takaoir S (1977) Influence of the locus coeruleus on interneurons in the spinal trigeminal nucleus. Brain Res 125: 369–375

    Article  PubMed  CAS  Google Scholar 

  • Sastry BSR, Phillis JW (1977) Antagonism of biogenic amine-induced depression of cerebral cortical neurones by Na+, K+,-ATPase inhibitors. Can J Physiol Pharmacol 55: 170–179

    Article  PubMed  CAS  Google Scholar 

  • Schaefer GJ, Holtzman SG (1977) Dose and time-dependent effects of narcotic analgetics on intracranial self-stimulation in the rat. Psychopharmacol 53: 227–234

    Article  CAS  Google Scholar 

  • Schaefer GT, Holtzman SG (1979) Free-operation and autotitration brain stimulation procedures in the rat. A comparison of drug effects. Pharmacol Biochem and Behavior 10: 127–135

    Article  CAS  Google Scholar 

  • Scheel-Kriiger J, Randrup A (1967) Stereotyped hyperactive behavior produced by dopamine in the absence of noradrenaline. Life Sci 6: 1389–1398

    Article  Google Scholar 

  • Schlumpf M, Shoemaker WJ, Bloom FE (1980) Innervation of embryonic rat cerebral cortex by catecholamine-containing fibers. J Comp Neur 192: 361–376

    Article  PubMed  CAS  Google Scholar 

  • Schulman JA (1981) Organization and regulation of neuronal activity in the inferior olive and cerebellum. Ph D Thesis Univ Calif San Diego

    Google Scholar 

  • Schulman JA, Weight FF (1976) Synaptic transmission: long-lasting potentiation by a postsynaptic mechanism. Science 194: 1437–1439

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Ruffieux A, Aebischer P (1983) The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation. Experimental Brain Res 51: 377–387

    Google Scholar 

  • Segal M (1976) Brain stem afferents to the rat medial septum. J Physiol (Lond) 261: 617–631

    CAS  Google Scholar 

  • Segal M (1980) The noradrenergic innervation of the hippocampus. In: Hobson JA, Brazier MAB (Eds) The Reticular Formation Revisited, pp 415–425

    Google Scholar 

  • Segal M, Bloom FE ( 1974 a) The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Res 72: 79–97

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Bloom FE ( 1974 b) The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway. Brain Res 72: 99–114

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Bloom FE ( 1976 a) The action of norepinephrine on the rat hippocampus. III Hippocampal cellular responses to locus coeruleus stimulation in the awake rat. Brain Res 107: 499–511

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Bloom FE ( 1976 b) The action of norepinephrine on the rat hippocampus. IV. The effects of locus coeruleus stimulation on evoked hippocampal activity. Brain Res 107: 513–525

    Article  PubMed  CAS  Google Scholar 

  • Segal DS, Kelly PH, Koob G, Roberts DCS (1979) Nonstriatal dopamine mechanisms in the response to repeated d-amphetamine administration. Usdin E, Kopin IJ, Barchas J (Eds) In: Catecholamines: Basic and Clinical Frontiers. Pergamon Press, New York

    Google Scholar 

  • Seiger A, Olson L (1973) Late prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwickl-Gesch 140: 281–318

    Article  CAS  Google Scholar 

  • Sessions GR, Kant GJ, Koob GF (1976) Locus coeruleus lesions and learning in the rat. Physiol Behav 17: 853–859

    Article  PubMed  CAS  Google Scholar 

  • Sessions GR, Meyerhoff JL, Kant GJ, Koob GF (1980) Effects of lesions of the ventral Catecholamines and Behavior medial tegmentum on locomotor activity, biogenic amines and response to amphetamine in rats. Pharmacol Biochem Behav 12: 603–608

    Article  PubMed  CAS  Google Scholar 

  • Shizgal P, Bielajew C, Kiss I (1980) Anodal hyperpolarization block technique provides evidence for rostro-caudal conduction of reward related signals in the medial forebrain bundle. Neurosci Abstr 6: 422

    Google Scholar 

  • Siggins GR (1977) The electrophysiological Role of dopamine in striatum: excitatory or inhibitory? In: Lip ton MA, Dimascio A, Killam KF (Eds) Psychopharmacology-a generation of progress. Raven Press, New York, pp 143–157

    Google Scholar 

  • Siggins GR (1978) Electrophysiological Role of dopamine in striatum: excitatory or inhibitory? In Lipton MA, DiMascio A, Killam KF (Eds) Psychopharmacology: A Generation of Progress. Raven Press, New York, pp 143–157

    Google Scholar 

  • Siggins GR, Gruol DL (1986) Mechanisms of transmitter action in the vertebrate central nervous system In: Bloom FE (Ed) Handbook of Physiology. American Physiological Society, Bethesda, MD. USA, pp 1–114

    Google Scholar 

  • Siggins GR, Henriksen SJ (1975) Inhibition of rat Purkinje neurons by analogues of cyclic adenosine monophosphate: correlation with protein kinase activation. Science 189: 557–560

    Article  Google Scholar 

  • Siggins GR, Hoffer BJ, Bloom FE (1971a) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. III. Evidence for mediation of norepinephrine effects by cyclic 3’,5’-monophosphate. Brain Res 25: 535–553

    Article  PubMed  CAS  Google Scholar 

  • Siggins GR, Hoffer BJ, Oliver AP, Bloom FE (1971b) Activation of a central noradrenergic projection to cerebellum. Nature 233: 481–483

    Article  PubMed  CAS  Google Scholar 

  • Siggins GR, Hoffer BJ, Bloom FE (1971c) Cyclic adenosine monophosphate and norepinephrine: effect on purkinje cells in rat cerebellar cortex. Science 174: 1258–1259

    CAS  Google Scholar 

  • Siggins GR, Oliver AP, Hoffer BJ, Bloom FE (1971 d) Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells. Science 171: 192–194

    Article  PubMed  CAS  Google Scholar 

  • Siggins GR, Hoffer BJ, Ungerstedt U (1974) Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons. Life Sci 16: 779–792

    Article  Google Scholar 

  • Siggins GR, Hoffer BJ, Bloom FE, Ungerstedt U ( 1976 a) In: Yahr MD (Ed) The Basal Ganglia. New York: Raven Press pp 227–248

    Google Scholar 

  • Siggins GR, Henriksen S J, Landis SC (1976 b) Electrophysiology of Purkinje neurons in the Weaver mouse: iontophoresis of neurotransmitters and cyclic nucleotides, and stimulation of the nucleus locus coeruleus. Brain Res 114: 53–70

    Article  PubMed  CAS  Google Scholar 

  • Silver MA, Jacobowitz DM (1979) Specific uptake and retrograde flow of antibody to dopamine-β-hydroxylase by central nervous system noradrenergic neurons in vivo. Brain Res 167: 65–75

    Article  PubMed  CAS  Google Scholar 

  • Simon H (1980) Neurones dopaminergiques A10 et système frontal. J Physiol (Paris) 77: 81–95

    Google Scholar 

  • Simon H, Le Moal M, Cardo B (1976) Intracranial self-stimulation from the dorsal raphe nucleus of the rat: effects of the injection of para-chlorophenylalanine and of alpha-methylparatyrosine. Behav Biol 16: 353

    Article  PubMed  CAS  Google Scholar 

  • Simon H, Scatton B, Le Moal M (1980) Dopaminergic A10 neurones are involved in cognitive functions. Nature 286:150–151

    Article  Google Scholar 

  • Skultety FM, Gary TM (1962) Experimental hyperphagia in cats following destructive midbrain lesions. Neurology 12: 394–401

    PubMed  CAS  Google Scholar 

  • Spehlmann R (1975) The effects of acetylcholine and dopamine on the caudate nucleus depleted of biogenic amines. Brain 98: 219–230

    Article  PubMed  CAS  Google Scholar 

  • Spencer H J, Havlicek V (1974) Alterations by anesthetic agents of the responses of rat striatal neurons to iontophoretically applied amphetamine, acetylcholine, noradrenaline and dopamine. Can J Physiol Pharmacol 52: 808–813

    Article  PubMed  CAS  Google Scholar 

  • Stein L, Ray OS (1960) Brain stimulation reward “thresholds” self-determined in rat. Psychopharmacologia 1: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Stein L, Wise CD (1971) Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science 171: 1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Stein L, Wise, CD, Berger BD (1973) Antianxiety action of benzodiazepines: decrease in activity of serotonin neurons in the punishment system In: Garattini S, Mussini E, Randall LO (Eds) The Benzodiazepines. Raven Press, New York pp 29–44

    Google Scholar 

  • Stein L, Belluzzi JD, Wise CD (1975) Memory enhancement by central administration of norepinephrine. Brain Res 84: 329–335

    Article  PubMed  CAS  Google Scholar 

  • Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983 a) Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258: 217–228

    Article  PubMed  CAS  Google Scholar 

  • Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983 b) Response of dopaminergic neurons in cat to auditory stimuli presented across the sleep-waking cycle. Brain Res 277: 150–154

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Hobson JA (1976) Neuronal activity during the sleep-waking cycle. Prog Neurobiol 6: 155–376

    Article  PubMed  CAS  Google Scholar 

  • Stinus L, Thierry AM, Cardo B (1976) Effects of various inhibitors of tyrosine hydroxylase and dopamine beta-hydroxylase on rat self-stimulation after reserpine treatment. Psychopharmacologia 45: 287–294

    Article  PubMed  CAS  Google Scholar 

  • Stinus L, Gaffori O, Simon H, Le Moal M (1977) Small doses of apomorphine and chronic administration of d-amphetamine reduce locomotor hyperactivity produced by radiofrequency lesions of dopaminergic A10 neurons area. Biol Psych 12: 719–732

    CAS  Google Scholar 

  • Stinus L, Simon H, Le Moal M (1978) Disappearance of hoarding and disorganization of eating behavior after ventral mesencephalic tegmentum lesions in rats. J Comp Physiol Psychol 92: 289–296

    Article  PubMed  CAS  Google Scholar 

  • Stolk JM, Conner RL, Levine S, Barchas JD (1974) Brain norepinephrine metabolism and shock induced fighting behavior in rats: diffferential effects of shock and fighting on the neurochemical response to a common footshock stimulus J Pharmacol Exp Ther 190: 193–209

    CAS  Google Scholar 

  • Stone EA (1971) Hypothalamic norepinephrine after acute stress. Brain Res 35: 260–263

    Article  PubMed  CAS  Google Scholar 

  • Stone EA (1973) Accumulation and metabolism of norepinephrine in rat hypothalamus after exhaustive stress. J Neurochem 21: 589–601

    Article  PubMed  CAS  Google Scholar 

  • Stone EA (1975) Effect of stress on sulfated gylcol metabolites of brain norepinephrine. Life Sci 16: 1725–1730

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (1976) Responses of neurones in the cerebral cortex and caudate nucleus to amantadine, amphetamine and dopamine. Br J Pharmcol 56: 101–110

    CAS  Google Scholar 

  • Stone TW, Bailey EV (1975) Responses of central neurones to amantadine: comparison with dopamine and amphetamine. Brain Res 85: 126–129

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Taylor DA (1977) Microiontophoretic studies of the effects of cyclic nucleotides on excitability of neurones in the rat cerebral cortex. J Physiol (Lond) 266: 523–543

    CAS  Google Scholar 

  • Strader CD, Pickel VM, Joh TJ, Strohsacker MW, Shorr RG, Lefkowitz RJ, Caron MG (1983) Antibodies to the beta-adrenergic receptor: attenuation of catecholamine- sensitive adenylate cyclase and demonstration of postsynaptic receptor localization in brain. Proc Natl Acad Sci USA 80: 1840–1844

    Article  PubMed  CAS  Google Scholar 

  • Strecker RE, Steinfels GF, Jacobs BL (1983) Dopaminergic unit activity in freely moving cats: lack of relationship to feeding satiety, and glucose injections. Brain Res 260: 317–321

    Article  PubMed  CAS  Google Scholar 

  • Strieker EM, Zigmond MJ (1974) Effects on homeostasis of intraventricular injections of 6-hydroxydopamine in rats. J Comp Physiol Psychol 86: 973–994

    Article  Google Scholar 

  • Sturgill TW, Schrier BK, Gilman AG (1975) Stimulation of cyclic AMP accumulation by 2-chloroadenosine: lack of incorporation of nucleoside into cyclic nucleotides. J Cyclic Nucleotide Res 1: 21–30

    CAS  Google Scholar 

  • Svensson TH, Bunney BS, Aghajanian GK (1975) Inhibition of both noradrenergic and serotonergic neurons in brain by the ¿x-adrenergic agonist clonidine. Brain Res 92: 291–306

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1976) The locus coeruleus: a cytoarchitectonic, golgi and immuohisto-chemical study in the albino rat. Brain Res 110: 39–56

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Hartman BK (1980) Biochemical specificity in central pathways related to peripheral and intracerebral homeostatic functions. Neurosci Lett 16: 55–60

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 37: 410–417

    Article  Google Scholar 

  • Takigawa M, Mogenson GJ (1977) A study of inputs to antidromically identified neurons of the locus coeruleus. Brain Res 135: 217–230

    Article  PubMed  CAS  Google Scholar 

  • Thatcher-Britton K, Svensson T, Schwartz J, Bloom FE, Koob GF (1984) Dorsal noradrenergic bundle lesions fail to alter opiate withdrawal or the suppression of opiate withdrawal by clonidine. Life Sci 34: 133–139

    Article  Google Scholar 

  • Thierry AM, Tassin JP, Blanc G, Glowinski J (1976) Selective activation of the meso-cortical dopaminergic system by stress. Nature 263: 242–244

    Article  PubMed  CAS  Google Scholar 

  • Thierry AM, Javoy F, Glowinski J, Kety SS ( 1968 a) Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover. J Pharmacol Exp Ther 163: 163–171

    PubMed  CAS  Google Scholar 

  • Thierry AM, Fekete M, Glowinski J ( 1968 b) Effects of stress on the metabolism of noradrenaline, dopamine and serotonin (5HT) in the central nervous system of the rat (II). Modifications of serotonin metabolism. Eur J Pharmacol 4: 384–389

    Article  PubMed  CAS  Google Scholar 

  • Thompson T, Pickens R (1970) Stimulant self-administration by animals: some comparisons with opiate self-administration. Fed Proc 29: 6–12

    PubMed  CAS  Google Scholar 

  • Tombaugh TN, Pappas BA, Roberts DCS, Vickers GJ, Szostak C (1983) Failure to replicate the dorsal bundle extinction effect: telencephalic norepinephrine depletion does not reliably increase resistance to extinction but does augment gustatory neophobia. Brain Res 261: 231–242

    Article  PubMed  CAS  Google Scholar 

  • Tsaltas E, Gray JA, Fillenz M (1984 a) Alleviation of response suppression to conditioned aversive stimuli by lesions of the dorsal noradrenergic bundle. Behavioral Brain Res 13: 115–127

    Article  CAS  Google Scholar 

  • Tsaltas E, Preston GC, Rawlins JN, Winocur G, Gray JA (1984b) Dorsal bundle lesions do not affect latent inhibition of conditioned suppression. Psychopharmacol 84: 549–555

    Article  CAS  Google Scholar 

  • Tsien RW (1973) Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibres. Nature (Lond) 245: 120–122

    Article  CAS  Google Scholar 

  • Tye NC, Everitt BJ, Iversen SD (1977) 5-Hydroxytryptamine and punishment. Nature 268: 741–743

    Article  PubMed  CAS  Google Scholar 

  • Uguru-Okorie DC, Arbuthnott GW (1981) Altered paw preference after unilateral 6-hydroxydopamine injections into lateral hypothalamus. Neuropsychologia 19: 463–467

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971 a) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand 82, Suppl 367: 1–48

    Google Scholar 

  • Ungerstedt U (1971b) Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand 82, Suppl 367: 69–93

    Google Scholar 

  • Ungerstedt U (1971c) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of nigro-striatal dopamine system. Acta Physiol Scand 82, Suppl 367: 95–122

    CAS  Google Scholar 

  • Vale WW, Rivier C, Spiess J, Brown MR, Rivier J (1983) Corticotropin releasing factor. In Krieger D, Brownstein M, Martin J (Eds) Brain Peptides. John Wiley and Sons, New York, pp 961–974

    Google Scholar 

  • Vandermaelen CP, Aghajanian GK (1980) Intracellular studies showing modulation of facial motoneurons excitability by serotonin. Nature 287: 346–347

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse BC, Lin C-S, Burne RA, Woodward DJ (1983) The distribution of neocor-tical projection neurons in the locus coeruleus. J Comp Neurol 217: 418–431.

    Article  PubMed  CAS  Google Scholar 

  • Wauquier A, Niemegeers CJE (1972) Intracranial self-stimulation in rats as a function of various stimulus parameters. II. Influence of haloperidol, pimozide and pipam-perone on medial forebrain bundle stimulation with monopolar electrodes. Psycho-pharmacologia 27: 191–202

    Article  CAS  Google Scholar 

  • Weissman A, Koe B, Tenen S (1966) Antiamphetamine effects following inhibition of tyrosine hydroxylase. J Pharmacol Exp Ther 151: 339–352

    PubMed  CAS  Google Scholar 

  • Wilson MC, Schuster CR (1972) The effects of chlorpromazine on psychomotor stimulant self-administration in the rhesus monkey. Psychopharmacology 26: 115–126

    Article  CAS  Google Scholar 

  • Wise CD, Stein L (1969) Facilitation of brain self-stimulation by central administration of NE. Science 163: 299–301

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1978 a) Catecholamine theories of reward: a critical review. Brain Res 152:215–247

    Article  Google Scholar 

  • Wise RA (1978 b) NeuRoleptic attenuation of intracranial self-stimulation: reward or performance deficits. Life Sci 22:535–543

    Article  Google Scholar 

  • Wise RA, Spindler J, Dewit H, Gerber GJ (1978) NeuRoleptic-induced “anhedonia” in rats: pimozide blocks the reward quality of food. Science 201: 252–264

    Article  Google Scholar 

  • Woodward DJ, Hoffer BJ, Altman J (1974) Physiological and pharmacological properties of Purkinje cells in rat cerebellum degranulated by postnatal X-0 irradiation. J Neurobiol 5: 283–304

    Article  PubMed  CAS  Google Scholar 

  • Woodward DJ, Moisés HC, Waterhouse BD, Hoffer BJ, Freedman R (1979) Modulatory actions of norepinephrine in the central nervous system. Fed Proc 38: 2109–2116

    PubMed  CAS  Google Scholar 

  • Yarbrough GG (1975) Supersensitivity of caudate neurons after repeated administration of haloperidol. Eur J Pharmacol 31: 367–369

    Article  PubMed  CAS  Google Scholar 

  • Yarbrough GG (1976) Ouabain antagonism of noradrenaline inhibitions of cerebellar Purkinje cells and dopamine inhibitions of caudate neurones. Neuropharmacol 15: 335–338

    Article  CAS  Google Scholar 

  • Yeh HH, Moisés HC, Waterhouse BD, Woodward DJ (1981) Modulatory interactions between norepinephrine and taurine, beta-alanine, gamma-aminobutyric acid and muscimol, applied iontophoretically to cerebellar Purkinje cells. Neuropharmacol 20: 549–560

    Article  CAS  Google Scholar 

  • Yokel RA, Wise RA (1975) Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science 187: 547–549

    Article  PubMed  CAS  Google Scholar 

  • Zarevics P, Setler PE (1979) Simultaneous rate-independent and rate-dependent assessment of intracranial self-stimulation: evidence for the direct involvement of dopamine in brain reinforcement mechanisms. Brain Res 169: 499–512

    Article  PubMed  CAS  Google Scholar 

  • Zigmond RE, Schon F, Iversen LL (1974) Increased tyrosine hydroxylase activity in the locus coeruleus of rat brainstem after reserpine treatment and cold stress. Brain Res 70: 547–552

    Article  PubMed  CAS  Google Scholar 

  • Zis AP, Fibiger HC, Phillips AG (1974) Reversal by L-dopa of impaired learning due to destruction of the dopaminergic nigro-neostriatal projection. Science 185: 960–962

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bloom, F.E., Schulman, J.A., Koob, G.F. (1989). Catecholamines and Behavior. In: Trendelenburg, U., Weiner, N. (eds) Catecholamines II. Handbook of Experimental Pharmacology, vol 90 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73551-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73551-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73553-0

  • Online ISBN: 978-3-642-73551-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics