Skip to main content

The Role of Tyrosine Hydroxylase in the Regulation of Catecholamine Synthesis

  • Chapter
Catecholamines II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 90 / 2))

Abstract

Tyrosine-3-monoxygenase (EC 1.14.16.2) (tyrosine hydroxylase) is the rate limiting enzyme in the pathway for the synthesis of catecholamines. This enzyme was first demonstrated in bovine adrenal medulla (Nagatsu et al. 1964 a; Brenneman and Kaufman 1964). Tyrosine hydroxylase is a mixed function oxidase, requiring molecular oxygen (Daly et al. 1968) and a reduced pterin (Nagatsu et al. 1964a; Brenneman and Kaufman 1964) as cosubstrates. The putative natural pterin cosubstrate is believed to be tetrahydrobiopterin and was first demonstrated in adrenal medulla cells (Lloyd and Weiner 1971). The cofactor is also present in brain tissue and the concentration of tetrahydrobiopterin in various brain regions is correlated with the distribution of catecholamines (Gal et al. 1976; Bullard et al. 1978; Levine et al. 1979; Mandell et al. 1980). Biopterin can be syntesized from guanosine in mouse neuroblastoma clones (Buff and Dairman 1974) and from guanosine triphosphate (GTP) in rat brain (Gal and Sherman 1976). Dihydropteridine reductase, the enzyme that catalyzes the reduction of 7,8-dihydropterins to the active 5,6,7,8-tetrahydroform, has been demonstrated in sheep liver (Kaufman 1964; Nielsen et al.1969; Craine et al. 1972), beef adrenal medulla (Musacchio 1969; Musacchio et al. 1971) and brain (Turner et al. 1974; Spector et al. 1977). The enzyme requires a reduced pyridine nucleotide for activity. Either NADH or NADPH serves as a cofactor for dihydropteridine reductase, but the former pyridine nucleotide exhibits a higher affinity for the enzyme (Nielsen et al. 1969; Craine et al. 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Donia MM, Viveros OH (1981) Tetrahydrobiopterin increases in adrenal medulla and cortex: a factor in the regulation of tyrosine hydroxylase. Proc Nat Acad Sci USA 78: 2703–2706

    PubMed  CAS  Google Scholar 

  • Abou-Donia MM, Wilson SP, Zimmerman TP, Nichol CA, Viveros OH (1986) Regulation of guanosine triphosphate cyclohydrolase and tetrahydrobiopterin levels and the Role of the cofactor in tyrosine hydroxylation in primary cultures of adrenomedullary chromaffin cells. J Neurochem 46: 1190–1199

    PubMed  CAS  Google Scholar 

  • Acheson AL and Thoenen H (1983) Cell contact-mediated regulation of tyrosine hydroxylase synthesis in cultured bovine adrenal chromaffin cells. J Cell Biol 97: 925–928

    PubMed  CAS  Google Scholar 

  • Acheson AL, Naujoks K, Thoenen H (1984) Nerve growth factor-mediated enzyme induction in primary cultures of bovine adrenal chromaffin cells: specificity and level of regulation. J Neuroscience 4: 1771–1780

    CAS  Google Scholar 

  • Acheson AL, Edgar D, Timpl R, Thoenen H (1986) Laminin increases both levels and activity of tyrosine hydroxylase in calf adrenal chromaffin cells. J Cell Biol 102: 151–159

    PubMed  CAS  Google Scholar 

  • Adler JE, Black IB (1985) Sympathetic neuron density differentially regulates transmitter phenotypic expression in culture. Proc Nat Acad Sci USA 82: 4296–4300

    PubMed  CAS  Google Scholar 

  • Alousi A, Weiner N (1966) The regulation of norepinephrine synthesis in sympathetic nerves. Effect of nerve stimulation, cocaine and catecholamine releasing agents. Proc Nat Acad Sci USA 56: 1491–1496

    Google Scholar 

  • Andrews DW, Langan TA, Weiner N (1983) Evidence for the involvement of a cyclic AMP-independent protein kinase in the activation of soluble tyrosine hydroxylase from rat striatum. Proc Nat Acad Sci USA 80: 2097–2101

    PubMed  CAS  Google Scholar 

  • Atkinson J, Richtand N, Schworer C, Kuczenski R, Soderling T (1987) Phosphorylation of purified rat striatal tyrosine hydroxylase by Ca2+/calmodulin-dependent protein kinase II: effect of an activator protein. J Neurochem 49: 1241–1249

    PubMed  CAS  Google Scholar 

  • Baetge EE, Suh YH, Joh TH (1986) Complete nucleotide and deduced amino acid sequence of bovine phenylethanolamine N-methyltransferase: partial amino acid homology with rat tyrosine hydroxylase. Proc Nat Acad Sci USA 83: 5454–5458

    PubMed  CAS  Google Scholar 

  • Bechtel PJ, Beavo JA, Krebs EG (1977) Purification and characterization of catalytic subunit of skeletal muscle adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 252: 2691–2697

    PubMed  CAS  Google Scholar 

  • Berod A, Faucon Biguet N, Dumas S, Bloch B, Mallet J (1987) Modulation of tyrosine hydroxylase gene expression in the central nervous system visualized by in situ hybridization. Proc Nat Acad Sci USA 84: 1699–1703

    PubMed  CAS  Google Scholar 

  • Bjur RA, Weiner N (1975) The activity of tyrosine hydroxylase in intact adrenergic neurons of the mouse vas deferens. J Pharmacol Exp Ther 194: 9–26

    PubMed  CAS  Google Scholar 

  • Black IB, Chikaraishi D, Lewis EJ (1985) Transsynaptic increase in RNA coding for tyrosine hydroxylase in a rat symapthetic ganglion. Brain Res 339: 151–153

    PubMed  CAS  Google Scholar 

  • Blum M, McEwen BS, Roberts JL (1987) Transcriptional analysis of tyrosine hydroxylase gene expression in the tuberoinfundibular dopaminergic neurons of the rat arcuate nucleus after estrogen treatment. J Biol Chem 262: 817–821

    PubMed  CAS  Google Scholar 

  • Boston PF, Jackson P, Thompson RJ (1982) Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. J Neurochem 38: 1475–1482

    PubMed  CAS  Google Scholar 

  • Bowyer J, Curella P, Tank AW Regulation of the translational activity of tyrosine hydroxylase mRNA by cyclic AMP and glucocortoids. Submitted for publication

    Google Scholar 

  • Brenneman AR, Kaufman S (1964) The Role of tetrahydropteridines in the enzymatic conversion of tyrosine to 3,4-dihydroxyphenylalanine. Biochem Biophys Res Comm 17: 177–183

    CAS  Google Scholar 

  • Buff K, Dairman W (1974) Biosynthesis of biopterin by two clones of mouse neuro-blastoma. Mol Pharmacol 11: 87–93

    Google Scholar 

  • Bullard WP, Capson TL (1983) Steady-state kinetics of bovine striatal tyrosine hydroxylase. Mol Pharmacol 23: 104–111

    PubMed  CAS  Google Scholar 

  • Bullard WP, Guthrie PB, Russo PV, Mandell AJ (1978) Regional and subcellular distribution and some factors in the regulation of reduced pterins in rat brain. J Pharmacol Exp Ther 206: 4–20

    PubMed  CAS  Google Scholar 

  • Butterworth KR, Mann M (1957) The release of adrenaline and noradrenaline from the adrenal glands of the cat by acetylcholine. Brit J Pharmacol Chemother 12: 422–426

    CAS  Google Scholar 

  • Bygdeman S, Euler von US (1958) Resynthesis of catechol hormones in the cat’s adrenal medulla. Acta Physiol Scand 44: 375–383

    PubMed  CAS  Google Scholar 

  • Cahill AL, Perlman RL (1984 a) Phosphorylation of tyrosine hydroxylase in the superior cervical ganglion. Biochem Biophys Acta 805: 217–226

    Google Scholar 

  • Cahill AL, Perlman RL (1984b) Electrical stimulation increases phosphorylation of tyrosine hydroxylase in superior cervical ganglion of rat. Proc Nat Acad Sci USA 81: 7243–7247

    PubMed  CAS  Google Scholar 

  • Campbell DG, Hardie DG, Vulliet PR (1986) Identification of four phosphorylation sites in the N-terminal region of tyrosine hydroxylase. J Biol Chem 261: 10489–10492

    PubMed  CAS  Google Scholar 

  • Carlsson A, Davis JN, Kehr W, Lindqvist M, Atack CV (1972) Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase. Naunyn-Schmiedeberg’s Arch Pharmacol 275: 153–168

    PubMed  CAS  Google Scholar 

  • Chalfie M, Settipani L, Perlman RL (1978) The Role of cyclic adenosine 3′:5′-monophosphate in the regulation of tyrosine 3-monooxygenase activity. Mol Pharmacol 15: 263–270

    Google Scholar 

  • Cloutier G, Weiner N (1973) Further studies on the increased synthesis of norepinephrine during nerve stimulation of guinea-pig vas deferens preparations: effect of tyrosine and 6,7-dimethyltetrahydropterin. J Pharmacol Exp Ther 186: 75–85

    PubMed  CAS  Google Scholar 

  • Cohen P (1980) Recently Discovered Systems of Enzyme Regulation by Reversible Phosphorylation. Elsevier-North Holland, Amsterdam

    Google Scholar 

  • Corbin JD, Soderling TR, Park CR (1973) Regulation of adenosine 3′:5′-monophosphate-dependent protein kinase. I. Preliminary characterization of the adipose tissue enzyme in crude extracts. J Biol Chem 248: 1813–1821

    Google Scholar 

  • Costa E, Green AR, Koslow SH, LeFevre HF, Revuelta AV, Wang C (1972) Dopamine and norepinephrine in noradrenergic areas: a study in vivo of their precursor product relationship by mass fragmentography and radiochemistry. Pharmacol Rev 24: 167–190

    PubMed  CAS  Google Scholar 

  • Costa E, Guidotti A, Zivkovic B (1974) Short- and long-term regulation of tyrosine hydroxylase. In: Usdin E (Ed) Neuropsychopharmacology of Monoamines and Their Regulatory Enzymes. Raven Press New York, pp 161–175

    Google Scholar 

  • Coyle JT (1972) Tyrosine hydroxylase in rat brain — cofactor requirements, regional and subcellular distribution. Biochem Pharmacol 21: 1935–1944

    PubMed  CAS  Google Scholar 

  • Craine JE, Hall ES, Kaufman S (1972) The isolation and characterization of dihydropteridine reductase from sheep liver. J Biol Chem 247: 6082–6091

    PubMed  CAS  Google Scholar 

  • Craine JE, Daniels GH, Kaufman S (1973) Dopamine-beta-hydroxylase: the subunit structure and anion activation of the bovine adrenal enzyme. J Biol Chem 248: 7838–7844

    PubMed  CAS  Google Scholar 

  • Daly J, Levitt M, Guroff G, Udenfriend S (1968) Isotope studies on the mechanism of action of adrenal tyrosine hydroxylase. Arch Biochem Biophys 126: 593–598

    PubMed  CAS  Google Scholar 

  • Davis JN (1976) Brain tyrosine hydroxylation: alteration of oxygen affinity in vivo by immobilization or electroshock in the rat. J Neurochem 27: 211–215

    PubMed  CAS  Google Scholar 

  • Davis JN, Carlsson A (1973) Effect of hypoxia on tyrosine and tryptophan hydroxylation in unanesthetized rat brain. J Neurochem 20: 913–915

    PubMed  CAS  Google Scholar 

  • Dix TA, Kuhn DM, Benkovic SJ (1987) Mechanism of oxygen activation by tyrosine hydroxylase. Biochemistry 26: 3354–3361

    PubMed  CAS  Google Scholar 

  • El-Mestikawy SE, Glowinski J, Hamon M (1983) Tyrosine hydroxylase activation in depolarized dopaminergic terminals: involvement of Ca2+-dependent phosphorylation. Nature 302: 830–832

    PubMed  CAS  Google Scholar 

  • Erny RE, Berezo MW, Perlman RL (1981) Activation of tyrosine 3-monooxygenase in pheochromocytoma cells by adenosine. J Biol Chem 256: 1335–1339

    PubMed  CAS  Google Scholar 

  • Euler von US, Luft R, Sundin T (1955) The urinary excretion of noradrenaline and adrenaline in healthy subjects during recumbancy and standing. Acta Physiol Scand 34: 169–174

    Google Scholar 

  • Faucon Biguet N, Buda M, Lamouroux A, Samolyk D, Mallet J (1986) Time course of the changes of TH mRNA in rat brain and adrenal medulla after a single injection of reserpine. EMBO J 5: 287–291

    Google Scholar 

  • Fisher DB, Kaufman S (1972) The inhibition of phenylalanine and tyrosine hydroxylase by high oxygen levels. J Neurochem 19: 1359–1365

    PubMed  CAS  Google Scholar 

  • Fischer DB, Kirkwood R, Kaufman S (1972) Rat liver phenylalanine hydroxylase, an iron enzyme. J Biol Chem 16: 5161–5167

    Google Scholar 

  • Fossom LH, Weiner N, Tank AW (1987) Increased transcription of the gene for tyrosine hydroxylase induced by cyclic AMP in a pheochromocytoma cell line. Society for Neuroscience 12: 599

    Google Scholar 

  • French TA, Weiner N (1984) Effect of ethanol on tyrosine hydroxylation in brain regions of long and short sleep mice. Alcohol 1: 247–252

    PubMed  CAS  Google Scholar 

  • French TA, Masserano JM, Weiner N (1983) Activation of tyrosine hydroxylase in the frontal cortex by phentolamine and prazosin. J Pharm Pharmacol 35: 618–620

    PubMed  CAS  Google Scholar 

  • Gal EM, Sherman AD (1976) Biopterin. II. Evidence for cerebral synthesis of 7,8-dihy-drobiopterin in vivo and in vitro. Neurochem Res 1: 627–639

    Google Scholar 

  • Gal EM, Hanson G, Sherman A (1976) Biopterin. I. Profile and quantitation in rat brain. Neurochem Res 1: 511–523

    Google Scholar 

  • Goldstein M, Joh TH, Garvey III TQ (1968) Kinetic studies of the enzymatic dopamine-beta-hydroxylation reaction. Biochemistry 7: 2724–2730

    PubMed  CAS  Google Scholar 

  • Goldstein M, Ohi Y, Backstrom T (1970) The effect of ouabain on catecholamine biosynthesis in rat brain cortex slices. J Pharmacol Exp Ther 174: 77–82

    PubMed  CAS  Google Scholar 

  • Goldstein M, Agagnoste B, Shirron C (1973) The effect of trivastol, haloperidol and di- butyryl cyclic AMP on 14C-dopamine synthesis in rat striatum. J Pharm Pharmacol 25: 348–351

    PubMed  CAS  Google Scholar 

  • Greene LA, Seeley PJ, Rukenstein A, DiPiazza M, Howard A (1984) Rapid activation of tyrosine hydroxylase in response to nerve growth factor. J Neurochem 42: 1728–1734

    PubMed  CAS  Google Scholar 

  • Greengard P (1975) Cyclic nucleotides, protein phosphorylation and neuronal function. In: Drummond GI, Greengard P, Robison GA (Eds) Advances in Cyclic Nu-cleotide Research. Raven Press, New York pp 585–601

    Google Scholar 

  • Greengard P (1978) Phosphorylated proteins as physiological effectors, Science 199: 146–152

    PubMed  CAS  Google Scholar 

  • Grima B, Lamouroux A, Blanot F, Faucon Biguet N, Mallet J (1985) Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc Nat Acad Sci USA 82: 617–621

    PubMed  CAS  Google Scholar 

  • Grima B, Lamouroux A, Boni C, Julien JF, Javoy-Agid F, Mallet J (1987) A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics. Nature 326: 707–711

    PubMed  CAS  Google Scholar 

  • Guidotti A, Costa E (1973) Involvement of adenosine 3′,5′-monophosphate in the activation of tyrosine hydroxylase elicited by drugs. Science 179: 902–904

    PubMed  CAS  Google Scholar 

  • Haavik J, Flatmark T (1987) Isolation and characterization of tetrahydropterin oxidation products generated in the tyrosine 3-monooxygenase (tyrosine hydroxylase) reaction. Eur J Biochem 168: 21–26

    PubMed  CAS  Google Scholar 

  • Halegoua S, Patrick J (1980) Nerve growth factor mediates phosphorylation of specific proteins. Cell 22: 571–581

    PubMed  CAS  Google Scholar 

  • Harrington CA, Lewis EJ, Chikaraishi D (1987) Identification and cell type specificity of the tyrosine hydroxylase gene promoter. Nucleic Acids Res 15: 2363–2383

    PubMed  CAS  Google Scholar 

  • Haycock JW (1987) Stimulation-dependent phosphorylation of tyrosine hydroxylase in rat corpus striatum. Brain Res Bull 19: 619–622

    PubMed  CAS  Google Scholar 

  • Haycock JW, Meligeni JA, Bennett WF, Waymire JC (1982 a) Phosphorylation and activation of tyrosine hydroxylase mediate the acetylcholine-induced increase in catecholamine biosynthesis in adrenal chromaffin cells. J Biol Chem 257: 12641–12648

    PubMed  CAS  Google Scholar 

  • Haycock JW, Bennett WF, George RJ, Waymire JC (1982 b) Multiple site phosphorylation of tyrosine hydroxylase, differential regulation in situ by 8-bromo-cAMP and acetylcholine. J Biol Chem 257: 13699–13703

    PubMed  CAS  Google Scholar 

  • Hefti F, Gnahn H, Schwab ME, Thoenen H (1982) Induction of tyrosine hydroxylase by nerve growth factor and by elevated potassium concentrations in cultures of dissociated sympathetic neurons. J Neurosci 2: 1554–1560

    PubMed  CAS  Google Scholar 

  • Hirata Y, Togari A, Nagatsu T (1983) Studies on tyrosine hydroxylase system in rat brain slices using high-performance liquid chromatography with electrochemical detection. J Neurochem 40: 1585–1589

    PubMed  CAS  Google Scholar 

  • Hoeldtke R, Kaufman S (1977) Bovine adrenal tyrosine hydroxylase: purification and properties. J Biol Chem 252: 3160–3169

    PubMed  CAS  Google Scholar 

  • Holland WC, Schümann HJ (1956) Formation of catecholamines during splanchnic stimulation of the adrenal gland of the cat. Brit J Pharmacol Chemother 11: 449–453

    CAS  Google Scholar 

  • Horellou P, Guibert B, Leviel V, Mallet J (1986) A single RNA species injected in Xenopus oocytes directs the synthesis of active tyrosine hydroxylase. FEBS Lett 205: 6–10

    PubMed  CAS  Google Scholar 

  • Horwitz J, Perlman RL (1984) Stimulation of DOPA synthesis in the superior cervical ganglion by veratridine. J Neurochem 42: 384–389

    PubMed  CAS  Google Scholar 

  • Horwitz J, Tsymbalov S, Perlman RL (1984) Muscarine increases tyrosine 3-monooxygenase activity and phospholipid metabolism in the superior cervical ganglion of the rat. J Pharmacol Exp Ther 229: 577–582

    PubMed  CAS  Google Scholar 

  • Houchi H, Masserano JM, Weiner N Bradykinin activates tyrosine hydroxylase in rat pheochromocytoma PC 12 cells. Submitted for publication

    Google Scholar 

  • Huttner WB, Greengard P (1979) Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium. Proc Nat Acad Sci USA 76: 5402–5406

    PubMed  CAS  Google Scholar 

  • Ichimura T, Isobe T, Okuyama T, Yamauchi T, Fujisawa H (1987) Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II. FEBS Lett. 219: 79–82

    PubMed  CAS  Google Scholar 

  • Ikeda M, Levitt M, Udenfriend S (1965) Hydroxylation of phenylalanine by purified preparation of adrenal and brain tyrosine hydroxylase. Biochem Biophys Res Comm 18: 482–488

    PubMed  CAS  Google Scholar 

  • Ikeda M, Fahien LA, Udenfriend S (1966) A kinetic study of bovine adrenal tyrosine hydroxylase. J Biol Chem 241: 4452–4456

    PubMed  CAS  Google Scholar 

  • Ikeda M, Levitt M, Udenfriend S (1967) Phenylalanine as substrate and inhibitor of tyrosine hydroxylase, Arch Biochem Biophys 120: 420–427

    PubMed  CAS  Google Scholar 

  • Ip NY, Zigmond RE (1985) Long-term regulation of tyrosine hydroxylase activity in the superior cervical ganglion in organ culture: effects of nerve stimulation and dexamethasone. Brain Res 338: 61–70

    PubMed  CAS  Google Scholar 

  • Ip NY, Ho CK, Zigmond RE (1982 a) Secretin and vasoactive intestinal peptide acutely increase tyrosine 3-monooxygenase in the rat superior cervical ganglion. Proc Nat Acad Sci USA 79: 7566–7569

    PubMed  CAS  Google Scholar 

  • Ip NY, Perlman RL, Zigmond RE (1982 b) Both nicotinic and muscarinic agonists acutely increase tyrosine 3-monooxygenase activity in the superior cervical ganglion. J Pharmacol Exp Ther 223: 280–283

    PubMed  CAS  Google Scholar 

  • Ip NY, Baldwin C, Zigmond RE (1984) Acute stimulation of ganglionic tyrosine hydroxylase activity by secretin, VIP and PHI. Peptides 5: 309–312

    PubMed  CAS  Google Scholar 

  • Ip NY, Baldwin C, Zigmond RE (1985) Regulation of the concentration of adenosine 3′,5′-cyclic monophosphate and the activity of tyrosine hydroxylase in the rat superior cervical ganglion by three neuropeptides of the secretin family. J Neurosci 5: 1947–1954

    PubMed  CAS  Google Scholar 

  • Iuvone PM (1984) Calcium, ATP, and magnesium activate soluble tyrosine hydroxylase from rat striatum. J Neurochem 43: 359–368

    Google Scholar 

  • Iuvone PM, Galli CL, Garrison-Fund CK, Neff NH (1978) Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202: 901–902

    PubMed  CAS  Google Scholar 

  • Iuvone PM, Reinhard JF, Abou-Donia MM, Viveros OH, Nichol CA (1985) Stimulation of retinal dopamine biosynthesis in vivo by exogenous tetrahydrobiopterin: relationship to tyrosine hydroxylase activation. Brain Res 359: 392–396

    PubMed  CAS  Google Scholar 

  • Iyer NT, McGeer PL, McGeer EG (1963) Conversion of tyrosine to catecholamines by rat brain slices. Canad J Biochem Physiol 41: 1565–1570

    PubMed  CAS  Google Scholar 

  • Joh TH, Kapit R, Goldstein M (1969) A kinetic study of particulate bovine adrenal tyrosine hydroxylase. Biochem Biophys Acta 171: 378–380

    PubMed  CAS  Google Scholar 

  • Joh TH, Geghman C, Reis D (1973) Immunochemical demonstration of increased accumulation of tyrosine hydroxylase protein in sympathetic ganglion and adrenal medulla elicited by reserpine. Proc Nat Acad Sci USA 70: 2676–2681

    Google Scholar 

  • Joh TH, Park DH, Reis DJ (1978) Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: mechanism of enzyme activation. Proc Nat Acad Sci USA 75: 4744–4748

    PubMed  CAS  Google Scholar 

  • Joh TH, Baetge EE, Reis DJ (1984) Molecular biology of catecholamine neurons: similar gene hypothesis. Hypertension Suppl. II, 6: 1–6

    Google Scholar 

  • Joh TH, Baetge EE, Ross ME, Lai CY, Docherty M, Bradford H, Reis DJ (1985) Genes for neurotransmitter synthesis, storage and uptake. Fed Proc 44: 2773–2779

    PubMed  CAS  Google Scholar 

  • Kaneda N, Kobayashi K, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1987) Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA slicing produces four kinds qf mRNA from a single gene. Biochem Biophys Res Comm 146: 971–975

    PubMed  CAS  Google Scholar 

  • Kapatos G, Zigmond MJ (1979) Effect of haloperidol on dopamine synthesis and tyrosine hydroxylase in striatal synaptosomes. J Pharmacol Exp Ther 208: 468–475

    PubMed  CAS  Google Scholar 

  • Katz I, Lloyd T, Kaufman S (1976 a) Studies on phenylalanine and tyrosine hydroxylation by rat brain tyrosine hydroxylase. Biochimica et Biophysica Acta 445: 567–578

    PubMed  CAS  Google Scholar 

  • Katz I, Yamauchi T, Kaufman S (1976 b) Activation of tyrosine hydroxylase by polyanions and salts. Biochimica et Biophysica Acta 429: 84–95

    PubMed  CAS  Google Scholar 

  • Kaufman S (1964) Studies on the structure of the primary oxidation product formed from tetrahydropteridines during phenylalanine hydroxylation. J Biol Chem 239: 332–338

    PubMed  CAS  Google Scholar 

  • Kaufman S, Fisher DB (1974) Pterinrequiring aromatic amino acid hydroxylases. In: Hayaishi O (Ed) Molecular Mechanism of Oxygen Activation. Academic Press, New York, pp 809–816

    Google Scholar 

  • Knapp S, Mandell AJ, Bullard WP (1975) Calcium activation of brain tryptophan hydroxylase. Life Sci 10: 1583–1594

    Google Scholar 

  • Kojima K, Mogi M, Oka K, Nagatsu T (1984) Purification and immunological characterization of human adrenal tyrosine hydroxylase. Neurochem Int 6: 475–480

    PubMed  CAS  Google Scholar 

  • Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Ann Rev Biochem 48: 923–959

    PubMed  CAS  Google Scholar 

  • Kuczenski R (1973 a) Soluble, membrane-bound, and detergent-solubilized rat striatal tyrosine hydroxylase. J Biol Chem 248:5074–5080

    Google Scholar 

  • Kuczenski R (1973 b) Striatal tyrosine hydroxylases with high and low affinity for tyrosine: implication for the multiple-pool concept of catecholamines. Life Sci 13:247–255

    Google Scholar 

  • Kuczenski R (1983) Effects of phospholipases on the kinetic properties of rat striatal membrane-bound tyrosine hydroxylase. J Neurochem 40: 821–829

    PubMed  CAS  Google Scholar 

  • Kuczenski RT, Mandell AJ (1972 a) Allosteric activation of hypothalamic tyrosine hydroxylase by ions and sulphated mucopolysaccharides. J Neurochem 19: 131–137

    PubMed  CAS  Google Scholar 

  • Kuczenski RT, Mandell AJ (1972 b) Regulatory properties of soluble and particulate rat brain tyrosine hydroxylase. J Biol Chem 247: 3114–3122

    PubMed  CAS  Google Scholar 

  • Kuhn KM, Lovenberg W (1983) Inactivation of tyrosine hydroxylase by reduced pterins. Biochem Biophys Res Comm 117: 894–900

    PubMed  CAS  Google Scholar 

  • Kvetnansky R, Gerwitz G, Weise VK, Kopin I (1971) Catecholamine-synthesizing enzymes in the rat adrenal gland during exposure to cold. Amer J Physiol 220: 928–931

    PubMed  CAS  Google Scholar 

  • Lamouroux A, Faucon Biguet N, Samolyk D, Privat A, Salomon JC, Pujol JF, Mallet J (1982) Identification of cDNA clones coding for rat tyrosine hydroxylase antigen. Proc Nat Acad Sci USA 79: 3881–3885

    PubMed  CAS  Google Scholar 

  • Langan TA (1968) Histone phosphorylation: stimulation by adenosine 3′:5′-monophosphate. Science 162: 579–580

    PubMed  CAS  Google Scholar 

  • Lazar MA, Truscott RJW, Raese JD, Barchas JD (1981) Thermal denaturation of native striatal tyrosine hydroxylase: increased thermolability of the phosphorylated form of the enzyme. J Neurochem 36: 677–682

    PubMed  CAS  Google Scholar 

  • Lazar MA, Lockfield AJ, Truscott RJW, Barchas JD (1982) Tyrosine hydroxylase from bovine striatum: catalytic properties of the phosphorylated and nonphosphorylated forms of the purified enzyme. J Neurochem 39: 409–422

    PubMed  CAS  Google Scholar 

  • Ledley FD, DiLella AG, Kwok SCM, Woo LC (1985) Homology between phenylalanine and tyrosine hydroxylases reveals common structural and functional domains. Biochemistry 24: 3389–3394

    PubMed  CAS  Google Scholar 

  • Lee EHY, Mandell AJ (1985) Relationships between drug-induced changes in tetrahy- drobiopterin and biogenic amine concentration in rat brain. J Pharmacol Exp Ther 234: 141–146

    PubMed  CAS  Google Scholar 

  • Lerner P, Ames MM, Lovenberg W (1977) The effect of ethylene glycol bis (b-amino- ethylether)-N,N’-tetraacetic acid and calcium on tyrosine hydroxylase activity. Mol Pharmacol 13: 44–49

    PubMed  CAS  Google Scholar 

  • Levine RA, Kuhn DM, Lovenberg W (1979) The regional distribution of hydroxylase cofactor in rat brain. J Neurochem 32: 1575–1578

    PubMed  CAS  Google Scholar 

  • Levine RA, Pollard HB, Kuhn DM (1984) A rapid and simplified assay method for tyrosine hydroxylase. Anal Biochem 143: 205–208

    PubMed  CAS  Google Scholar 

  • Levitt M, Spector S, Sjoerdsma A, Udenfriend S (1965) Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart. J Pharmacol Exp Ther 148: 1–8

    PubMed  CAS  Google Scholar 

  • Lewis EJ, Tank AW, Weiner N, Chikaraishi D (1983) Regulation of tyrosine hydroxy-lase mRNA by glucocorticoid and cyclic AMP in a rat pheochromocytoma cell line: isolation of a cDNA clone for tyrosine hydroxylase mRNA. J Biol Chem 258: 14632–14637

    PubMed  CAS  Google Scholar 

  • Lewis EJ, Harrington CA, Chikaraishi D (1987) Transcriptional regulation of the tyro-sine hydroxylase gene by glucocortcoid and cyclic AMP. Proc Nat Acad Sci USA 84: 3550–3554

    PubMed  CAS  Google Scholar 

  • Lloyd T, Kaufman S: The stimulation of partially purified bovine caudate tyrosine hydroxylase by phosphatidyl-L-serine. Biochem Biophys Res Comm 59: 1262–1269

    Google Scholar 

  • Lloyd T, Weiner N (1971) Isolation and characterization of a tyrosine hydroxylase co-factor from bovine adrenal medulla. Mol Pharmacol 7: 569–580

    PubMed  CAS  Google Scholar 

  • Lovenberg W, Bruckwick EA (1975) Mechanisms of receptor mediated regulation of catecholamine synthesis in brain. In: Usdin E, Bunney Jr WE (Eds) Pre- and Post-synaptic Receptors. Marcel Dekker, New York, pp 149–168

    Google Scholar 

  • Lovenberg W, Bruckwick EA, Hanbauer I (1975) ATP, cyclic AMP and magnesium increase the affinity of rat striatal tyrosine hydroxylase for its cofactor. Proc Nat Acad Sci USA 72: 2955–2958

    PubMed  CAS  Google Scholar 

  • Mandell AJ, Knapp S, Kuczenski RT, Segal DS (1972) Methamphetamine-induced alteration in the physical state of rat caudate tyrosine hydroxylase. Biochem Pharmacol 21: 2737–2750

    PubMed  CAS  Google Scholar 

  • Mandell AJ, Bullard WP, Yellin JB, Russo PV (1980) The influence of D-ampheta- mine on rat brain striatal reduced biopterin concentration. J Pharmacol Exp Ther 213: 569–574

    PubMed  CAS  Google Scholar 

  • Markey KA, Kondo S, Shenkman L, Goldstein M (1980) Purification and characterization of tyrosine hydroxylase from a clonal pheochromocytoma cell line. Mol Pharmacol 17: 79–85

    PubMed  CAS  Google Scholar 

  • Martin R, Ames B (1961) A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem 236: 1372–1379

    PubMed  CAS  Google Scholar 

  • Masserano JM, Weiner N (1979) The rapid activation of adrenal tyrosine hydroxylase by decapitation and its relationship to a cyclic AMP-dependent phosphorylating mechanism. Mol Pharmacol 16: 513–528

    PubMed  CAS  Google Scholar 

  • Masserano JM, Weiner N (1981) The rapid activation of tyrosine hydroxylase by the subcutaneous injection of formaldehyde. Life Sci 29: 2025–2029

    PubMed  CAS  Google Scholar 

  • Masserano JM, Takimoto GS, Weiner N (1981) Electroconvulsive shock increases tyrosine hydroxylase activity in the brain and adrenal glands of the rat. Science 214: 662–665

    PubMed  CAS  Google Scholar 

  • McGeer PL, Bagchi SP, McGeer EG (1965) Subcellular localization of tyrosine hy-droxylase in beef caudate nucleus. Life Sci 4: 1859–1867

    PubMed  CAS  Google Scholar 

  • McTigue M, Cremins J, Halegoua S (1985) Nerve growth factor and other agents mediate phosphorylation and activation of tyrosine hydroxylase, a convergence of multiple kinase activities. J Biol Chem 260: 9047–9056

    PubMed  CAS  Google Scholar 

  • Meligeni J, Tank AW, Stephens JK, Dreyer E, Weiner N (1981) In vivo phosphorylation of rat adrenal tyrosine hydroxylase during acute decapitation stress. In: Rosen OM, Krebs EG (Eds) Cold Spring Harbor Conferences on Cell Proliferation, Vol 8. pp 1377–1389

    Google Scholar 

  • Meligeni JA, Haycock JW, Bennett WF, Waymire JC (1982) Phosphorylation and activation of tyrosine hydroxylase mediate the cAMP-induced increase in catechol-amine biosynthesis in adrenal chromaffin cells. J Biol Chem 257: 12641–12648

    PubMed  Google Scholar 

  • Moore BW, Perez VJ (1967) Physiological and Biochemical Aspects of Nervous Integration. Prentice-Hall, Englewood, Cliff NJ, pp 343–359

    Google Scholar 

  • Morgenroth III VH, Broadle-Biber M, Roth RH (1974) Tyrosine hydroxylase: activation by nerve stimulation. Proc Nat Acad Sci USA 71: 4283–4287

    PubMed  CAS  Google Scholar 

  • Morgenroth III VH, Hegstrand LR, Roth RH, Greengard P (1975 a) Evidence for involvement of protein kinase in the activation by adenosine 3′:5′-monophosphate of brain tyrosine 3-monooxygenase. J Biol Chem 250: 1946–1948

    Google Scholar 

  • Morgenroth III VH, Boadle-Biber MC, Roth RH (1975b) Activation of tyrosine hydroxylase from central noradrenergic neurons by calcium. Mol Pharmacol 11: 427–435

    CAS  Google Scholar 

  • Morita K, Oka M (1977) Activation by cyclic AMP of soluble tyrosine hydroxylase in bovine adrenal medulla. FEBS Lett 76: 148–150

    PubMed  CAS  Google Scholar 

  • Morita K, Nakanishi A, Houchi H, Oka M, Teracaoka K, Minakuchi K, Hamano S Murakumo Y (1986 a) Modulation by basic peptides of ATP-induced activation of tyrosine hydroxylase prepared from bovine adrenal medulla. Arch Biochem Biophys 247: 84–90

    PubMed  CAS  Google Scholar 

  • Morita K, Houchi H, Nakanishi A, Minakuchi K, Teracaoka K, Oka M (1986b) Inositol phospholipids cause the activation of adrenal tyrosine hydroxylase through their electrostatic action on the enzyme. Int J Biochem 18: 857–860

    PubMed  CAS  Google Scholar 

  • Morita K, Teraoka K, Oka M (1987) Interaction of cytoplasmic tyrosine hydroxylase with chromaffin granule. In vitro studies on association of soluble enzyme with granule membranes and alteration in enzyme activity. J Biol Chem 262: 5654–5658

    PubMed  CAS  Google Scholar 

  • Mueller RA, Thoenen H, Axelrod J (1969 a) Increase in tyrosine hydroxylase activity after reserpine administration. J Pharmacol Exp Ther 169: 74–79

    PubMed  CAS  Google Scholar 

  • Mueller RA, Thoenen H, Axelrod J (1969b) Inhibition of transsynaptically increased tyrosine hydroxylase activity by cycloheximide and actinomycin D. Mol Pharmacol 5: 463–469

    PubMed  CAS  Google Scholar 

  • Mueller RA, Thoenen H, Axelrod J (1970) Inhibition of neurally induced tyrosine hydroxylase by nicotinic receptor blockade. Eur J Pharmacol 10: 51–56

    PubMed  CAS  Google Scholar 

  • Musacqhio JM (1969) Beef adrenal dihydropteridine reductase. Biochem Biophys Acta 191: 485–487

    Google Scholar 

  • Musacchio JM, D’Angelo GL, McQueen CA (1971) Dihydropteridine reductase: implication on the regulation of catecholamine biosynthesis. Proc Nat Acad Sci USA 68: 2087–2091

    PubMed  CAS  Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964 a) Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J Biol Chem 238: 2910–2917

    Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964 b) A rapid and simple radioassay for tyrosine hydroxylase activity. Anal Biochem 9: 122–126

    PubMed  CAS  Google Scholar 

  • Nagatsu T, Numata Y, Kato T, Sugiyama K, Akino M (1978) Effects of melanin on tyrosine hydroxylase and phenylalanine hydroxylase. Biochim Biophys Acta 523: 47–52

    PubMed  CAS  Google Scholar 

  • Nelson TJ, Kaufman S (1987) Activation of rat caudate tyrosine hydroxylase phosphatase by tetrahydropterin. J Biol Chem 262: 16470–16475

    PubMed  CAS  Google Scholar 

  • Nielsen KH, Simonsen V, Lind KE (1969) Dihydropteridine reductase: a method for the measurement of activity and investigations of the specificity for NADH and NADPH. Eur J Biochem 9: 497–502

    PubMed  CAS  Google Scholar 

  • Numata (Sudo) Y, Nagatsu T (1975) Properties of tyrosine hydroxylase in peripheral nerves. J Neurochem 24: 317–322

    Google Scholar 

  • O’Callaghan JP, Dunn L, Lovenberg W (1980) Calcium-regulated phosphorylation in synaptosomal cytosol: dependence on calmodulin. Proc Nat Acad Sci USA 77: 5812–5816

    PubMed  Google Scholar 

  • Oka K, Ashiba G, Sugimoto T, Matsuura S, Nagatsu T (1982) Kinetic properties of tyrosine hydroxylase purified from bovine adrenal medulla and bovine caudate nucleus. Biochim Biophys Acta 706: 188–196

    PubMed  CAS  Google Scholar 

  • Oka K, Kojima K, Nagatsu T (1983) Characterization of tyrosine hydroxylase from bovine adrenal medulla. Biochem Int 7: 387–393

    PubMed  CAS  Google Scholar 

  • Okuno S, Fujisawa H (1982) Purification and some properties of tyrosine 3-monooxy- genase from rat adrenal. Eur J Biochem 122: 49–55

    PubMed  CAS  Google Scholar 

  • Okuno S, Fujisawa H (1983) Assay of tyrosine 3-monooxygenase using the coupled nonenzymatic decarboxylation of dopa. Anal Biochem 129: 405–411

    PubMed  CAS  Google Scholar 

  • Okuno S, Fujisawa H (1985) A comparative study of tyrosine 3-monooxygenase from rat adrenal and brainstem. J Biochem 97: 265–273

    PubMed  CAS  Google Scholar 

  • Osborne NN, Neuhoff V (1976) Activitation of snail ( Helix pomatia) nervous tissue tyrosine monooxygenase by calcium in vitro. Hoppe-Seyler’s J Physiol Chem 357: 1271–1275

    CAS  Google Scholar 

  • Otten U, Thoenen H (1975) Circadian rhythm of tyrosine hydroxylase induction by short-term cold stress: modulary action of glucocorticoids in newborn and adult rats. Proc Nat Acad Sci USA 72: 1415–1419

    PubMed  CAS  Google Scholar 

  • Otten U, Thoenen H (1976) Selective induction of tyrosine hydroxylase and dopa- mine-beta-hydroxylase in sympathetic ganglia in organ culture: Role of glucocorticoids as modulators. Mol Pharmacol 12: 353–361

    PubMed  CAS  Google Scholar 

  • Otten U, Oesch F, Thoenen H (1973) Dissociation between the changes in cyclic AMP and subsequent induction of TH in the rat superior cervical ganglion and adrenal medulla. Naunyn-Schmiedeberg’s Arch Pharmacol 285: 233–242

    Google Scholar 

  • Park DH and Goldstein M (1975) Purification of tyrosine hydroxylase from pheochromocytoma tumors. Life Sci 18: 55–60

    Google Scholar 

  • Patrick RL, Barchas JD (1974) Regulation of catecholamine synthesis in rat brain synaptosomes. J Neurochem 23: 7–15

    PubMed  CAS  Google Scholar 

  • Petrack B, Sheppy F, Fetzer V (1968) Studies on tyrosine hydroxylase from bovine adrenal medulla. J Biol Chem 243: 743–748

    PubMed  CAS  Google Scholar 

  • Pfeffer RI, Mosimann W, Weiner N (1975) Time course of the effect of reserpine administration on tyrosine hydroxylase activity in adrenal glands and vasa deferentia. J Pharmacol Exp Ther 193: 533–548

    PubMed  CAS  Google Scholar 

  • Pickel VM, Joh TH, Reis DJ (1975) Ultrastructural localization of tyrosine hydroxy-lase in noradrenergic neurons of brain. Proc Nat Acad Sci USA 72: 659–663

    PubMed  CAS  Google Scholar 

  • Pickel VM, Joh TH, Reis DJ (1977) Regional and ultrastructural localization of tyrosine hydroxylase by immunocytochemistry in dopaminergic neurons of the meso- limbic and nigroneostriatal system. In: Costa E, Gessa GL (Eds) Advances in Biochemical Psychopharmacology. Raven Press, New York pp 321–329

    Google Scholar 

  • Pickel VM, Beckley SC, Joh TH, Reis DJ (1981) Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res 225: 373–385

    PubMed  CAS  Google Scholar 

  • Pocotte SL, Holz RW (1986) Effects of phorbol ester on tyrosine hydroxylase phosphorylation and activation in cultured bovine adrenal chromaffin cells. J Biol Chem 261: 1873–1877

    PubMed  CAS  Google Scholar 

  • Pocotte SL, Holz RW, Ueda T (1986) Cholinergic receptor-mediated phosphorylation and activation of tyrosine hydroxylase in cultured bovine adrenal chromaffin cells. J Neurochem 46: 610–622

    PubMed  CAS  Google Scholar 

  • Pollock RJ, Kapatos G, Kaufman S (1981) Effect of cyclic AMP-dependent protein phosphorylating conditions on the pH dependent activity of tyrosine hydroxylase from beef and rat striata. J Neurochem 37: 855–860

    PubMed  CAS  Google Scholar 

  • Potter LT, Cooper T, Willman VL, Wolfe DE (1965) Synthesis, binding, release, and metabolism of norepinephrine in normal and transplanted dog hearts. Circulation Res 16: 468–481

    PubMed  CAS  Google Scholar 

  • Raese JD, Edleman AM, Lazar MA, Barchas JD (1977) Bovine striatal tyrosine hydroxylase: multiple forms and evidence for phosphorylation by cyclic AMP-dependent protein kinase. In Usdin E, Weiner N, Youdim MBH (Eds) Structure and Function of Monoamine Enzymes. Marcel Dekker, New York, pp 383–421

    Google Scholar 

  • Raese JD, Edleman AM, Makk G, Bruckwick EA, Lovenberg W, Barchas JD (1979) Brain striatal tyrosine hydroxylase: activation of the enzyme by cyclic AMP-inde- pendent phosphorylation. Comm Psychopharmacol 3: 295–301

    CAS  Google Scholar 

  • Richtand NM, Inagami T, Misono K, Kuczenski R (1985) Purification and characterization of rat striatal tyrosine hydroxylase: comparison of the activation of cyclic AMP dependent phosphorylation and by other effectors. J Biol Chem 260: 8465–8473

    PubMed  CAS  Google Scholar 

  • Rosenberg RC, Lovenberg W (1983) Determination of some molecular parameters of tyrosine hydroxylase from rat adrenal, rat striatum, and human pheochromocy- toma. J Neurochem 40: 1529–1533

    PubMed  CAS  Google Scholar 

  • Roskoski R, Roskoski LM (1987) Activation of tyrosine hydroxylase in PC 12 cells by the cyclic GMP and cyclic AMP second messenger systems. J Neurochem 48: 236–242

    PubMed  CAS  Google Scholar 

  • Roth RH, Stjarne L, Euler von US (1967) Factors influencing the rate of norepineph-rine biosynthesis in nerve tissue. J Pharmacol Exp Ther 158: 373–377

    PubMed  CAS  Google Scholar 

  • Roth RH, Salzman PM, Morgenroth III VH (1974 a) Noradrenergic neurons: allosteric activation of hippocampal tyrosine hydroxylase by stimulation of the locus coeruleus. Biochem Pharmacol 23: 2779–2784

    PubMed  CAS  Google Scholar 

  • Roth RH, Walters JR, Morgenroth III VH (1974b) Effects of alterations in impulse flow on neurotransmitter metabolism in central dopaminergic neurons. In: Usdin E (Ed Neuropsychopharmacology of Monoamines and Their Regulatory Enzymes. Raven Press, New York, pp 369–384

    Google Scholar 

  • Roth RH, Morgenroth III VH, Salzman PM (1975 a) Tyrosine hydroxylase: allosteric activation induced by stimulation of central noradrenergic neurons. Naunyn- Schmiedeberg’s Arch Pharmacol 289: 327–343

    Google Scholar 

  • Roth RH, Walters JR, Murrin LC, Morgenroth III VH (1975b) Dopamine neurons: Role of impulse flow and pre-synaptic receptors in the regulation of tyrosine hydroxylase. In: Usdin E, Bunney Jr WE (Eds) Pre- and Postsynaptic Receptors. Marcel Dekker, New York, pp 5–46

    Google Scholar 

  • Shen RS, Hamilton-Byrd EL, Vulliet PR, Kwan SW, Abell CW (1986) A simplified 14 C02-trapping microassay for tyrosine hydroxylase activity. J Neurosci Methods 16: 163–173

    PubMed  CAS  Google Scholar 

  • Shiman R, Akino M, Kaufman S (1971) Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J Biol Chem 246: 1330–1340

    PubMed  CAS  Google Scholar 

  • Siegel L, Monty K (1966) Determination of molecular weights and fractional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochem Biophys Acta 112: 346–362

    PubMed  CAS  Google Scholar 

  • Spector R, Levy P, Abelson HT (1977) Identification of dihydrofolate reductase in rabbit brain. Biochem Pharmacol 26: 1507–1511

    PubMed  CAS  Google Scholar 

  • Stachowiak MK, Fluharty SJ, Strieker EM, Zigmond MJ, Kaplan BB (1986) Molecular adaptations in catecholamine biosynthesis induced by cold stress and sympathectomy. J Neurosci Res 16: 13–24

    PubMed  CAS  Google Scholar 

  • Stephens JK, Masserano JM, Vulliet PR, Weiner N, Nakane PK (1981) Immunocyto-chemical localization of tyrosine hydroxylase in rat adrenal medulla by peroxidase labeled antibody method: effects of enzyme activation on ultrastructural distribution of the enzyme. Brain Res 209: 339–354

    PubMed  CAS  Google Scholar 

  • Stjarne L (1966) Studies of noradrenaline biosynthesis in the nerve tissue. Acta Physiol Scand 67: 441–454

    PubMed  CAS  Google Scholar 

  • Tachikawa E, Tank AW, Yanigihara N, Mosimann W, Weiner N (1986) Phosphorylation of tyrosine hydroxylase on at least three sites in rat pheochromocytoma PC12 cells treated with 56 mM K+: determination of the sites on tyrosine hydroxylase phosphorylated by cyclic AMP-dependent and calcium/calmodulin-dependent kinases. Mol Pharmacol. 30: 476–485

    PubMed  CAS  Google Scholar 

  • Tachikawa E, Tank AW, Weiner DH, Mosimann WF, Yanagihara N, Weiner N (1987) Tyrosine hydroxylase is activated and phosphorylated on different sites in rat pheo- chromocytoma PC 12 cells treated with phorbol ester and forskolin. J Neurochem 48: 1366–1376

    PubMed  CAS  Google Scholar 

  • Takai Y, Kishimoto A, Iwasa Y, Kawahara Y, Mori T, Nishizuka Y (1979) Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem 254: 3692–3695

    PubMed  CAS  Google Scholar 

  • Tank AW, Weiner N (1982) Induction of tyrosine hydroxylase by glucocorticoids in mouse neuroblastoma cells. Enhancement of the induction by cyclic AMP. Mol Pharmacol 22: 421–430

    PubMed  CAS  Google Scholar 

  • Tank AW, Lewis EJ, Chikaraishi DM, Weiner N (1985) Elevation of RNA coding for tyrosine hydroxylase in rat adrenal gland by reserpine treatment and exposure to cold. J Neurochem 45: 1030–1033

    PubMed  CAS  Google Scholar 

  • Tank AW, Ham L, Curella P (1986a) Induction of tyrosine hydroxylase by cyclic AMP and glucocorticoids in a rat pheochromocytoma cell line: effect of the inducing agents alone or in combination on the enzyme levels and rate of synthesis of tyrosine hydroxylase. Mol Pharmacol. 30: 486–496

    PubMed  CAS  Google Scholar 

  • Tank AW, Curella P, Ham L (1986b) Induction of mRNA for tyrosine hydroxylase by cyclic AMP and glucocorticoids in a rat pheochromocytoma cell line: evidence for the regulation of tyrosine hydroxylase synthesis by multiple mechanisms in cells exposed to elevated levels of both inducing agents. Mol Pharmacol 30: 497–503

    PubMed  CAS  Google Scholar 

  • Taylor RJ, Jr, Stubbs CS, Ellenbogen L (1969) Tyrosine hydroxylase inhibition in vitro and in vivo by chelating agents. Biochem Pharmacol 18: 587–594

    PubMed  CAS  Google Scholar 

  • Thoenen H, Mueller RA, Axelrod J (1969) Transsynaptic induction of adrenal tyrosine hydroxylase. J Pharmacol Exp Ther 169: 249–254

    PubMed  CAS  Google Scholar 

  • Tischler AS, Perlman RL, Costopolos D, Horwitz J (1985) Vasoactive intestinal peptide increases tyrosine hydroxylase activity in normal and neoplastic rat chromaffin cell cultures. Neurosci Lett 61: 141–146

    PubMed  CAS  Google Scholar 

  • Turner AJ, Ponzio F, Algeri S (1974) Dihydropteridine reductase in rat brains: regional distribution and the effect of catecholamine-depleting drugs. Brain Res 70: 553–558

    PubMed  CAS  Google Scholar 

  • Udenfriend S, Zaltzman-Nirenberg P, Nagatsu T (1965) Inhibitors of purified beef adrenal tyrosine hydroxylase. Biochem Pharmacol 14: 837–845

    PubMed  CAS  Google Scholar 

  • Van Calker D, Heumann R (1987) Nerve growth factor potentiates the agonist-stimulated accumulation of inositol phosphates in PC-12 pheochromocytoma cells. Eur J Pharmacol 135: 259–260

    PubMed  Google Scholar 

  • Vigny A, Henry JP (1981) Bovine adrenal tyrosine hydroxylase: comparative study of native and proteolyzed enzymes, and their interaction with anions. J Neurochem 36: 483–489

    PubMed  CAS  Google Scholar 

  • Viveros OH, Lee CL, Abou-Donia MM, Nixon JC, Nichol CA (1981) Biopterin cofactor biosynthesis: independent regulation of GTP cyclohydroxylase in adrenal medulla and cortex. Science 213: 349–350

    PubMed  CAS  Google Scholar 

  • Vrana KE, Roskoski R (1983) Tyrosine hydroxylase inactivation following cAMP-dependent phosphorylation activation. J Neurochem 40: 1692–1700

    PubMed  CAS  Google Scholar 

  • Vulliet PR, Weiner N (1981) A schematic model for the allosteric activation of tyrosine hydroxylase. In: Usdin E, Weiner N, Youdim MBH (Eds) Function and Regulation of Monoamine enzymes. Macmillan, London, pp 15–24

    Google Scholar 

  • Vulliet PR, Langan TA, Weiner N (1980) Tyrosine hydroxylase: a substrate of cyclic AMP-dependent protein kinase. Proc Nat Acad Sci USA 77: 92–96

    PubMed  CAS  Google Scholar 

  • Vulliet PR, Woodgett JR, Cohen P (1984) Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase. J Biol Chem 259: 13680–13683

    PubMed  CAS  Google Scholar 

  • Vulliet PR, Woodgett JR, Ferrari S, Hardie DG (1985) Characterization of the sites phosphorylated on tyrosine hydroxylase by Ca2+ and phospholipid-dependent protein kinase, calmodulin-dependent multiprotein kinase and cyclic AMP-dependent protein kinase. FEBS Lett 182: 335–339

    PubMed  CAS  Google Scholar 

  • Walicke PA, Campenot RB, Patterson PH (1977) Determination of transmitter function by neuronal activity. Proc Nat Acad Sci USA 74: 3767–3771

    Google Scholar 

  • Walters JR, Roth RH (1974) Dopaminergic neurons: drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow. J Pharmacol Exp Ther 191: 82–91

    PubMed  CAS  Google Scholar 

  • Walters JR, Bunney BS, Roth RH (1975) Piribedil and apomorphine: pre- and postsynaptic effects on dopamine synthesis and neuronal activity. In: Caine DB, Chase TN, Barbeau A, Advances in Neurology, Vol 9. Raven Press, New York pp 273–284

    Google Scholar 

  • Wang M, Cahill AL, Perlman RL (1986) Phorbol 12,13-dibutyrate increases tyrosine hydroxylase activity in the superior cervical ganglion of the rat. J Neurochem 46: 388–393

    PubMed  CAS  Google Scholar 

  • Waymire JC, Bjur R, Weiner N (1971) Assay of tyrosine hydroxylase by coupled decar-boxylation of dopa formed from 1-14C-L-tyrosine. Anal Biochem 43: 588–600

    PubMed  CAS  Google Scholar 

  • Waymire JC, Weiner N, Schneider FH, Goldstein M, Freedman LS (1972) Tyrosine hydroxylase in human adrenal and pheochromocytoma: localization, kinetics, and catecholamine inhibition. J Clin Inv 51: 1798–1804

    CAS  Google Scholar 

  • Weiner N, Bjur R (1972) The Role of monoamine oxidase in the regulation of norepinephrine synthesis. Adv Biochem Psychopharmacol 5: 409–415

    PubMed  CAS  Google Scholar 

  • Weiner N, Rabadjija M (1968) The effect of nerve stimulation on the synthesis and metabolism of norepinephrine in the isolated guinea-pig hypogastric nervevas deferens preparation. J Pharmacol Exp Ther 160: 61–71

    PubMed  CAS  Google Scholar 

  • Weiner N, Selvaratnam I (1968) The effect of tyramine on the synthesis of norepinephrine. J Pharmacol Exp Ther 161: 21–33

    PubMed  CAS  Google Scholar 

  • Weiner N, Cloutier G, Bjur R, Pfeffer RI (1972) Modification of norepinephrine synthesis in intact tissue by drugs and during short-term adrenergic nerve stimulation. Pharmacol Rev 24: 203–221

    PubMed  CAS  Google Scholar 

  • Weiner N, Bjur R, Lee FL, Becker G, Mosimann WF (1973) Studies on the mechanism of regulation of tyrosine hydroxylase activity during nerve stimulation. In: Usdin E, Snyder SH (Eds) Frontiers in Catecholamine Research, Pergamon Press, New York, pp 211–221

    Google Scholar 

  • Weiner N, Lee, FL, Waymire, JC, Posiviata M (1974) The regulation of tyrosine hydroxylase activity in adrenergic nervous tissue. In: Wurtman RJ (Ed) Ciba Foundation Symposium 22, Aromatic Amino Acids in the Brain. Elsevier, Amsterdam, pp 135–147

    Google Scholar 

  • Weiner N, Lee FL, Dreyer E, Barnes E (1978) The activation of tyrosine hydroxylase in noradrenergic neurons during acute nerve stimulation. Life Sci 22: 1197–1216

    PubMed  CAS  Google Scholar 

  • Weiner N, Lee FL, Meligeni J, Tank AW (1981) In situ phosphorylation of vas deferens tyrosine hydroxylase during hypogastric nerve stimulation. In: Usdin E, Youdim MBH, Weiner N (Eds) Function and Regulation of Monoamine Enzymes Macmillan, London, pp 3–14

    Google Scholar 

  • Wolinski E, Patterson PH (1983) Tyrosine hydroxylase activity decreases with induction of cholinergic properties in cultured sympathetic neurons. J Neurosci 3: 1495–1500

    Google Scholar 

  • Wrenn RW, Katoh N, Wise BC, Kuo JF (1980) Stimulation by phosphatidylserine and calmodulin of calcium-dependent phosphorylation of endogenous proteins from cerebral cortex. J Biol Chem 255: 12042–12046

    PubMed  CAS  Google Scholar 

  • Wurtzburger RJ, Musacchio JM (1971) Subcellular distribution and aggregation of bovine adrenal tyrosine hydroxylase. J Pharmacol Exp Ther 177: 155–167

    Google Scholar 

  • Yamauchi T, Fujisawa H (1979 a) Regulation of bovine adrenal tyrosine 3-monooxygenase by phosphorylation-dephosphorylation reaction, catalyzed by adenosine 3′:5′- monophosphate-dependent protein kinase and phosphoprotein phosphatase. J Biol Chem 254: 6408–6413

    PubMed  CAS  Google Scholar 

  • Yamauchi T, Fujisawa H (1979b) In vitro phosphorylation of bovine adrenal tyrosine hydroxylase by adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 254: 503–507

    PubMed  CAS  Google Scholar 

  • Yamauchi T, Fujisawa H (1981) Tyrosine 3-monooxygenase is phosphorylated by Ca2+-calmodulin dependent protein kinase, followed by activation by activator protein. Biochem Biophys Res Comm 100: 807–813

    PubMed  CAS  Google Scholar 

  • Yamauchi T, Nakata H, Fujisawa H (1981) A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-calmodulin dependent protein kinase. J Biol Chem 256: 5404–5409

    PubMed  CAS  Google Scholar 

  • Yanagihara N, Tank AW, Langan TA, Weiner N (1986) Enhanced phosphorylation of tyrosine hydroxylase at more than one site is induced by 56 mM K+ in rat pheochromocytoma PC 12 cells in culture. J Neurochem 46: 562–568

    PubMed  CAS  Google Scholar 

  • Zigmond RE, Mackay AVP, Iversen LL (1974) Minimum duration of transsynaptic stimulation required for the induction of tyrosine hydroxylase by reserpine in the rat superior cervical ganglion. J Neurochem 23: 355–358

    PubMed  CAS  Google Scholar 

  • Zivkovic B, Guidotti A (1974) Changes of kinetic constant of striatal tyrosine hydroxylase elicited by neuRoleptics that impair the function of dopamine receptors. Brain Res. 79: 505–509

    PubMed  CAS  Google Scholar 

  • Zivkovic B, Guidotti A, Costa E (1974) Effect of neuRoleptics on striatal tyrosine hydroxylase: changes in the affinity for the pteridine cofactor. Mol Pharmacol 10: 727–735

    CAS  Google Scholar 

  • Zivkovic B, Guidotti A, Revuelta A, Costa E (1975) Effect of thioridazine, clozapine, and other antipsychotics on the kinetic state of tyrosine hydroxylase and on the turnover rate of dopamine in striatum and nucleus accumbens. J Pharmacol Exp Ther 194: 37–46

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Masserano, J.M., Vulliet, P.R., Tank, A.W., Weiner, N. (1989). The Role of Tyrosine Hydroxylase in the Regulation of Catecholamine Synthesis. In: Trendelenburg, U., Weiner, N. (eds) Catecholamines II. Handbook of Experimental Pharmacology, vol 90 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73551-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73551-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73553-0

  • Online ISBN: 978-3-642-73551-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics