Skip to main content

Catecholamine Biochemical Genetics

  • Chapter
Catecholamines II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 90 / 2))

Abstract

Catecholamine biochemical genetics has advanced significantly during the past decade. Biochemical genetic studies have already contributed to our understanding of the regulation of catecholamine biosynthesis and metabolism and promise to help clarify the biological basis of individual variation of human adrenergic function. The most extensive catecholamine biochemical genetic data relate to the effects of inheritance on the enzymes that catalyze catecholamine biosynthesis and degradation. Before these data are reviewed, the research strategies and analytical techniques most commonly used in biochemical genetic experiments will be described briefly.

Supported in part by NIH grants NS 11014, HL 17487 and GM 28157. Dr. Weinshilboum is a Burroughs Wellcome Scholar in Clinical Pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RJ, Weinshilboum RM (1979) Phenolsulphotransferase: enzyme activity and endogenous inhibitors in the human erythrocyte. J Lab Clin Med 94: 158–171

    PubMed  CAS  Google Scholar 

  • Anderson RJ, Weinshilboum RM (1980) Phenolsulphotransferase in human tissue: radiochemical enzymatic assay and biochemical properties. Clin Chim Acta 103: 79–90

    PubMed  CAS  Google Scholar 

  • Anderson R, Weinshilboum R, Phillips S, Broughton D (1981) Human platelet phenol sulphotransferase: assay procedure, substrate and tissue correlations. Clin Chim Acta 110: 157–167

    PubMed  CAS  Google Scholar 

  • Assicot M, Bohuon C (1969) Production of antibodies to catechol-O-methyltransferase in rat liver. Biochem Pharmacol 18: 1893–1898

    PubMed  CAS  Google Scholar 

  • Assicot M, Bohuon C (1971) Presence of two distinct catechol-O-methyltransferase activities in red blood cells. Biochimie 53: 871–874

    PubMed  CAS  Google Scholar 

  • Axelrod J (1962) Purification and properties of phenylethanolamine N-methyl-transferase. J Biol Chem 237: 1657–1660

    PubMed  CAS  Google Scholar 

  • Axelrod J, Cohen CK (1971) Methyltransferase enzymes in red blood cells. J Pharmacol Exp Ther 176: 650–654

    PubMed  CAS  Google Scholar 

  • Axelrod J, Tomchick R (1958) Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem 233: 702–705

    PubMed  CAS  Google Scholar 

  • Axelrod J, Vesell ES (1970) Heterogeneity of N- and O-methyltransferases. Mol Pharmacol 6: 78–84

    PubMed  CAS  Google Scholar 

  • Bailey DW (1971) Recombinant-inbred strains. Transplantation 11: 325–327

    PubMed  CAS  Google Scholar 

  • Baker H, Joh TH, Reis DJ (1980) Genetic control of the number of midbrain dopaminergic neurons in inbred strains of mice: relationship to size and neuronal density of the striatum. Proc Nat Acad Sci USA 77: 4369–4373

    PubMed  CAS  Google Scholar 

  • Baron M, Kreuz D, Levitt M, Gruen R, Asnis L (1982 a) Variation in thermal stability of human plasma dopamine-beta-hydroxylase. Biol Psychiat 17: 621–626

    PubMed  CAS  Google Scholar 

  • Baron M, Levitt M, Hunter C, Gruen R, Asnis L (1982 b) Thermolabile catechol-O- methyltransferase in human erythrocytes: a confirmatory note. Biol Psychiat 17: 265–270

    PubMed  CAS  Google Scholar 

  • Bateson W (1907) The progress of genetic research. In: Spottiswoode London, Report of the Third International Conference 1906 on Genetics, pp 90–97

    Google Scholar 

  • Bellin JW, Sorrentino JM (1974) Kinetic characteristics of monoamine oxidase anserum Cholinesterase in several related rat strains. Biochem Genet 11: 309–317

    PubMed  CAS  Google Scholar 

  • Blaschko H (1974) The natural history of amine oxidases. Rev Physiol Biochem Pharmacol 70: 81–148

    Google Scholar 

  • Breakefield XO, Castiglione CM, Edelstein SB (1976) Monoamine oxidase activity decreased in cells lacking hypoxanthine phosphoribosyltransferase activity. Science 192: 1018–1020

    PubMed  CAS  Google Scholar 

  • Breakefield XO, Edelstein SB, Castro Costa MR (1979) Genetic analysis of neurotransmitter metabolism in cell culture: studies on the Lesch-Nyhan syndrome. In Breakefield XO (Eds) Neurogenetics: Genetic Approaches to the Nervous System. Elsevier, New York, pp 197–234

    Google Scholar 

  • Breakefield XO, Giller EL, Nürnberger JI, Castiglione CM, Buchsbaum MS, Gershon ES (1980) Monoamine oxidase type A in fibroblasts from patients with bipolar depressive illness. Psychiat Res 2: 307–314

    CAS  Google Scholar 

  • Breakefield XO, Edelstein SB, Grossman MH (1981) Variations in MAO and NGF in cultured human skin fibroblasts. In: Gershon ES, Matthysse S, Breakefield XO, Ciaranello RD, (Eds) Genetic Strategies in Psychobiology and Psychiatry. Boxwood Press, Pacific Grove, pp 129–142

    Google Scholar 

  • Bridge TP, Wise CD, Potkin SG, Phelps BH, Wyatt RJ (1981) Platelet monoamine oxidase: studies of activity and thermolability in a general population. In: Gershon ES, Matthysse S, Breakefield XO, Ciaranello RD (Eds), Genetic Strategies in Psychobiology and Psychiatry. Boxwood Press, Pacific Grove, pp 95–104

    Google Scholar 

  • Bruell JH (1962) Dominance and segregation in the inheritance of quantitative behavior in mice. In: Bliss EL (Ed) Roots of Behavior. Harper and Brothers, New York pp 48–67

    Google Scholar 

  • Castro Costa MR, Breakefield XO (1979) Electrophoretic characterization of monoamine oxidase by [3H]pargyline binding in rat hepatoma cells with A and B activity. Mol Pharmacol 16: 242–249

    Google Scholar 

  • Castro Costa MR, Edelstein SB, Castiglione CM, Chao H, Breakefield XO (1980) Properties of monoamine oxidase in control and Lesch-Nyhan fibroblasts. Biochem Genet 18: 577–590

    PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL (1976) Enzyme polymorphism. Neurosci Res Prog Bull 14: 56–58

    Google Scholar 

  • Cavalli-Sforza LL, Bodmer WF (1971) The Genetics of Human Populations. San Francisco: Freeman

    Google Scholar 

  • Cavalli-Sforza LL, Santachiara SA, Wang L (1974) Electrophoretic study of 5-hydroxy- tryptophan decarboxylase from brain and liver in several species. J Neurochem 23: 629–634

    PubMed  CAS  Google Scholar 

  • Cawthon RM, Breakefield XO (1979) Differences in A and B forms of monoamine oxidase revealed by limited proteolysis and peptide mapping. Nature (Lond) 281: 692–694

    CAS  Google Scholar 

  • Ciaranello RD (1978) Regulation of phenylethanolamine N-methyltransferase. Bio-chem Pharmacol 27: 1895–1897

    CAS  Google Scholar 

  • Ciaranello RD, Axelrod J (1973) Genetically controlled alterations in the rate of degradation of phenylethanolamine N-methyltransferase. J Biol Chem 248: 5616–5623

    PubMed  CAS  Google Scholar 

  • Ciaranello RD, Barchas R, Kessler S, Barchas JD (1972 a) Catecholamines: strain differences in biosynthetic enzyme activity in mice. Life Sci 11: 565–572

    CAS  Google Scholar 

  • Ciaranello RD, Dornbusch JN, Barchas JD (1972 b) Regulation of adrenal phenylethanolamine N-methyltransferase activity in three inbred mouse strains. Mol Pharmacol 8: 511–520

    PubMed  CAS  Google Scholar 

  • Ciaranello RD, Hoffman HF, Shire JGM, Axelrod J (1974) Genetic regulation of the catecholamine biosynthetic enzyme. II. Inheritance of tyrosine hydroxylase, dopa- mine-beta-hydroxylase and phenylethanolamine N-methyltransferase. J Biol Chem 249: 4528–4536

    PubMed  CAS  Google Scholar 

  • Committee on Nomenclature (1976) Report of Committee on Nomenclature. Birth Defects. Original Articles 12: 65–74

    Google Scholar 

  • Conolly ME, Davies DS, Dollery CT, Morgan CD, Paterson JW, Sandler M (1972) Metabolism of isoprenaline in dog and man. Br J Pharmacol 46: 458–472

    PubMed  CAS  Google Scholar 

  • Creveling CR, Borchardt RT, Isersky C (1973) Immunological characterization of catechol-O-methyltransferase. In: Usdin E, Snyder S (Eds) Frontiers in Catecholamine Research Pergamon Press New York, pp 117–119

    Google Scholar 

  • Dairman W, Christenson JG (1973) Properties of human red blood cell L-3,4-dihy-droxyphenylalanine decarboxylase activity. Eur J Pharmacol 22: 135–140

    PubMed  CAS  Google Scholar 

  • Dodgson KS (1977) Conjugation with sulfate. In: Parke DV, Smith RL (Eds) Drug Metabolism from Microbe to Man. Francis London, pp 91–104

    Google Scholar 

  • Dunnette J, Weinshilboum R (1976) Human serum dopamine-beta-hydroxylase: correlation of enzymatic activity with immunoreactive protein in genetically defined samples. Am J Hum Genet 28: 155–166

    PubMed  CAS  Google Scholar 

  • Dunnette J, Weinshilboum R (1977) Inheritance of low immunoreactive human plasma dopamine-beta-hydroxylase: radioimmunoassay studies. J Clin Invest 60: 1080–1087

    PubMed  CAS  Google Scholar 

  • Dunnette J, Weinshilboum R (1979) Human plasma dopamine-beta-hydroxylase: variation in thermal stability. Mol Pharmacol 15: 649–660

    PubMed  CAS  Google Scholar 

  • Dunnette J, Weinshilboum R (1981) Human plasma dopamine-beta-hydroxylase: oxygen and thermal stability. Experientia 37: 115–117

    PubMed  CAS  Google Scholar 

  • Dunnette J, Weinshilboum R (1982 a) Family studies of plasma dopamine-beta-hydroxylase thermal stability. Am J Hum Genet 34: 84–99

    PubMed  CAS  Google Scholar 

  • Dunnette J, Weinshilboum R (1982 b) Serum dopamine-beta-hydroxylase activity in non-human primates. The Pharmacologist 24: 243

    Google Scholar 

  • Dunnette J, Weinshilboum R (1983) Serum dopamine-beta-hydroxylase activity in non-human primates: phylogenetic and genetic implications. Comp Biochem Physiol 75: 85–91

    CAS  Google Scholar 

  • Edelstein SB, Castiglione CM, Breakefield XO (1978) Monoamine oxidase activity in normal and Lesch-Nyhan fibroblasts. J Neurochem 31: 1247–1254

    PubMed  CAS  Google Scholar 

  • Elston RC, Stewart J (1971) A general model for the genetic analysis of pedigree data. Hum Heredity 21: 523–542

    PubMed  CAS  Google Scholar 

  • Elston RC, Namboodiri KK, Hames CG (1963) Segregation and linkage analysis of dopamine-beta-hydroxylase activity. Hum Heredity 29: 284–292

    Google Scholar 

  • Falconer DS (1963) Quantitative inheritance. In: Burdette MJ (Ed) Methodology in Mammalian Genetics. Holden-Day, San Francisco, pp 193–216

    Google Scholar 

  • Floderus Y, Wetterberg L (1981) The inheritance of human erythrocyte catechol-O-methyltransferase ( COMT) activity. Clin Genet 19: 392–395

    PubMed  CAS  Google Scholar 

  • Floderus Y, Ross SB, Wetterberg L (1981) Erythrocyte catechol-O-methyltransferase ( COMT) activity in a Swedish population. Clin Genet 19: 389–392

    PubMed  CAS  Google Scholar 

  • Freedman LS, Ohuchi T, Goldstein M, Axelrod F, Fish I, Dancis J (1972) Changes in human serum dopamine-beta-hydroxylase activity with age. Nature (Lond) 236: 310–311

    CAS  Google Scholar 

  • Fuentes JA, Neff NH (1975) Selective monoamine oxidase inhibitor drugs as aids in evaluating the Role of type A and B enzymes. Neuropharmacol 14: 819–825

    CAS  Google Scholar 

  • Gardner EJ (1984) Principles of Genetics. New York: John Wiley and Sons Gershon ES (1979) Genetics of the affective disorders. Hosp Pract 14: 117–122

    Google Scholar 

  • Gershon ES, Jonas WZ (1975) Erythrocyte soluble catechol-O-methyltransferase activity in primary affective disorder. Arch Gen Psychiat 32: 1351–1356

    PubMed  CAS  Google Scholar 

  • Gershon ES, Jonas WZ (1976) Inherited differences in brain and erythrocyte soluble catechol-O-methyltransferase activity in two mouse strains. Biol Psychiat 11: 641–645

    PubMed  CAS  Google Scholar 

  • Gershon ES, Goldin LR, Lake CR, Murphy DL, Guroff JJ (1980) Genetics of plasma dopamine-beta-hydroxylase, erythrocyte catechol-O-methyltransferase and plasma monoamine oxidase in pedigrees of patients with affective disorders. In: Usdin E, Sourkes P, Youdim MBH (Eds) Enzymes and Neurotransmitters in Mental Disease. New York: Wiley and Sons pp 281–299

    Google Scholar 

  • Goldin LR, Gershon ES, Lake CR, Murphy DL, McGinniss M, Sparkes RS (1982) Segregation and linkage studies of plasma dopamine-beta-hydroxylase (DBH), erythrocyte catechol-O-methyltransferase (COMT), and platelet monoamine oxidase (MAO): possible linkage between ABO locus and a gene controlling DBH activity. Am J Hum Genet 34: 250–262

    PubMed  CAS  Google Scholar 

  • Goldstein DJ, Weinshilboum RM, Dunnette JH, Creveling CR (1980) Developmental patterns of catechol-O-methyltransferase in genetically different rat strains: enzymatic and immunochemical studies. J Neurochem 34: 153–162

    PubMed  CAS  Google Scholar 

  • Groshong R, Gibson DA, Baldessarini RJ (1977) Monoamine oxidase activity in cultured human skin fibroblasts. Clin Chim Acta 80: 113–120

    PubMed  CAS  Google Scholar 

  • Grunhaus L, Ebstein R, Belmaker R, Sandler SG, Jonas W (1976) A twin study of human red blood pell catechol-O-methyltransferase. Br J Psychiat 128: 494–498

    CAS  Google Scholar 

  • Harris H (1980) The Principles of Human Biochemical Genetics. Third edition. American Elsevier, New York

    Google Scholar 

  • Hart RF, Renskers KJ, Nelson EB, Roth JA (1979) Localization and characterization of phenol sulfotransferase in human platelets. Life Sci 24:125–139

    Google Scholar 

  • Heiss G, TyRoler HA, Gunnells JC, McGuffin WL, Harnes CG (1980) Dopamine-beta-hydroxylase in a biracial community: demographic, cardiovascular and familial factors. J Chron Dis 33: 301–310

    PubMed  CAS  Google Scholar 

  • Heston LL (1977) Schizophrenia: genetic factors. Hosp Pract 12: 43–49

    PubMed  CAS  Google Scholar 

  • Hodgetts RB (1975) The response of dopa decarboxylase activity to variations in gene dosage in Drosophila: a possible location of the structural gene. Genetics 79: 45–54

    PubMed  CAS  Google Scholar 

  • Hopkinson DA, Spencer N, Harris H (1964) Genetical studies on human red cell acid phosphatase. Hum Genet 16: 141–154

    CAS  Google Scholar 

  • Houslay MD, Tipton KF, Youdim MBH (1976) Multiple forms of monoamine oxidase: fact and artifact. Life Sci 19: 467–478

    PubMed  CAS  Google Scholar 

  • Hum MMO, Friedhoff AJ (1979) Multiple molecular forms of catechol-O-methyl-transferase. J Biol Chem 254: 299–308

    Google Scholar 

  • Johnson JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17: 1285–1297

    Google Scholar 

  • Kessler S, Ciaranello RD, Shire JGM, Barchas JD (1972) Genetic variation in activity of enzymes involved in synthesis of catecholamines. Proc Nat Acad Sci USA 69: 2448–2450

    PubMed  CAS  Google Scholar 

  • Kimura M, Ohta T (1974) On some principles governing molecular evolution. Proc Nat Acad Sci USA 71: 2848–2852

    PubMed  CAS  Google Scholar 

  • Kuchel O, Buu NT, Unger T (1979) Free and conjugated dopamine; physiological and clinical implications. In Imbs JL, Schwartz J (Eds) Peripheral Dopaminergic Receptors. Pergamon Press, New York, pp 15–27

    Google Scholar 

  • Kuchel O, Buu NT, Fontaine A, Harfiet P, Beroniade V, Larochelle P, Genet J (1980) Free and conjugated catecholamines in hypertensive patients with and without pheochromocytoma. Hypertension 2: 177–186

    PubMed  CAS  Google Scholar 

  • Levitt M, Mendlewicz J (1975) A genetic study of plasma dopamine-beta-hydroxylase in affective disorder. Mod Probl Pharmacopsychiat 10: 89–98

    CAS  Google Scholar 

  • Levitt M, Spector S, Sjoerdsma A, Udenfriend S (1965) Elucidation of the rate limiting step in norepinephrine biosynthesis on the perfused guinea-pig heart. J Pharmacol Exp Ther 148: 1–8

    PubMed  CAS  Google Scholar 

  • Lewontin RC (1974) The Genetic Basis of Evolutionary Change. Columbia University Press.

    Google Scholar 

  • Li CC (1961) Human Genetics, Principles and Methods. McGraw-Hill, New York

    Google Scholar 

  • Maus TP, Pearson RK, Anderson RJ, Woodson LC, Reiter C, Weinshilboum RM (1982) Rat phenol sulfotransferase: assay procedure, developmental changes and glucocorticoid regulation. Biochem Pharmacol 31: 849–856

    PubMed  CAS  Google Scholar 

  • Mendel G (1865) Versuche über Pflanzen-Hybride. Verhandlungen des naturforschenden Vereines in Brünn 4: 3–47

    Google Scholar 

  • Minamiura N, Yasumobu KT (1978) Bovine liver monoamine oxidase: a modified purification procedure and preliminary evidence for two subunits and one FAD. Arch Biochem Biophys 189: 481–489

    PubMed  CAS  Google Scholar 

  • Murphy DL (1978) Substrate-selective monoamine oxidases-inhibitor, tissue, species and functional differences. Biochem Pharmacol 27: 1889–1893

    PubMed  CAS  Google Scholar 

  • Murphy DL, Wright C, Buchsbaum M, Nichols A, Costa JL, Wyatt RJ (1976) Platelet and plasma amine oxidase activity in 680 normals: sex and age differences and stability over time. Biochem Med 16: 254–265

    CAS  Google Scholar 

  • Murphy DL, Redmond DE Jr, Bauler J, Donnelly CH (1978) Platelet monoamine oxidase activity in 116 normal rhesus monkeys: relations between enzyme activity and age, sex, and genetic factors. Comp Biochem Physiol 60C: 105–108

    CAS  Google Scholar 

  • Nies A, Robinson DS, Lamborn KR, Lampert RP (1973) Genetic control of platelet and plasma monoamine oxidase activity. Arch Gen Psychiat 28: 834–838

    PubMed  CAS  Google Scholar 

  • Ogihara T, Nugent CA, Shen SW, Goldfein S (1975) Serum dopamine-beta-hydroxylase activity in parents and children. J Lab Clin Med 85: 566–573

    PubMed  CAS  Google Scholar 

  • Paigen K (1971) The genetics of enzyme realization. In: Rechcigl M Jr (Ed) Enzyme Synthesis and Degradation in Mammalian Systems. University Park Press, Baltimore pp 1–44

    Google Scholar 

  • Paigen K (1979) Acid hydrolases as model of genetic control. Ann Rev Genet 13: 417–466

    PubMed  CAS  Google Scholar 

  • Paigen K, Swank RT, Tomino S, Ganschow RE (1975) The molecular genetics of mammalian glucuronidase. J Cell Physiol 85: 379–392

    PubMed  CAS  Google Scholar 

  • Pandey GN, Doras E, Shaughnessy R, Davis JM (1979) Genetic control of platelet monoamine oxidase activity: studies on normal families. Life Sci 25: 1173–1178

    PubMed  CAS  Google Scholar 

  • Pintar JE, Barbosa J, Francke U, Castiglione CM, Hawkins MH Jr, Breakefield XO (1981) Gene for monoamine oxidase type A assigned to the human X chromosome. J Neurochem 1: 166–175

    CAS  Google Scholar 

  • Quiram DR, Weinshilboum RM (1976) Catechol-O-methyltransferase in rat erythrocyte and three other tissues: comparison of biochemical properties after removal of inhibitory calcium. J Neurochem 27: 1197–1203

    PubMed  CAS  Google Scholar 

  • Raymond FA, Weinshilboum RM (1975) Microassay of human erythrocyte catechol-O- methyltransferase: removal of inhibitory calcium with chelating resin. Clin Chim Acta 58: 185–194

    PubMed  CAS  Google Scholar 

  • Reilly DK, Rivera-Calimlim L (1979) Racial difference in catechol-O-methyltransferase activity? A comparison of Filipinos with Caucasians in the United States. Clin Pharmacol Ther 25: 244

    Google Scholar 

  • Reilly DK, Rivera-Calimlim L, Van Dyke D (1980) Catechol-O-methyltransferase activity: a determinant of levodopa response. Clin Pharmacol Ther 28: 278–286

    PubMed  CAS  Google Scholar 

  • Rein G, Glover V, Sandler M (1981) Phenolsulphotransferase in human tissue: evidence for multiple forms. In Sandler M, Usdin E (Eds) Phenolsulfotransferase in Mental Health Research MacMillan, London, pp 98–126

    Google Scholar 

  • Reis DJ, Baker H, Fink JS, Joh TH (1981) A genetic control of the number of dopamine neurons in mouse brain: its relationship to brain morphology, chemistry and behavior. In: Genetic Strategies in Psychobiology and Psychiatry. Gershon ES, Matthysse S, Breakefield XO, Ciaranello RD (Eds) Boxwood Press, Pacific Grove, pp 215–229

    Google Scholar 

  • Reiter C, Weinshilboum R (1982) Acetaminophen and phenol: substrates for both a thermostable and a thermolabile form of human platelet phenol sulfotransferase. J Pharmacol Exp Ther 221: 43–51

    PubMed  CAS  Google Scholar 

  • Renskers KJ, Feor KD, Roth JA (1980) Sulfation of dopamine and other biogenic amines by human brain phenol sulfotransferase. J Neurochem 34: 1362–1368

    PubMed  CAS  Google Scholar 

  • Roffman M, Reigle TG, Orsalak PJ, Schildkraut JJ (1976) Properties of catechol-O- methyltransferase in soluble and particulate preparations from rat red blood cells. Biochem Pharmacol 25: 208–209

    PubMed  CAS  Google Scholar 

  • Ross SB, Wetterberg L, Myrhed M (1973) Genetic control of plasma dopamine-beta-hydroxylase. Life Sci (I) 12: 529–532

    CAS  Google Scholar 

  • Ross RA, Judd AB, Pickel VM, Joh TH, Reis DJ (1976) Strain-dependent variations in number of midbrain dopaminergic neurons. Nature (Lond) 264: 654–656

    CAS  Google Scholar 

  • Roth JA, Breakefield XO, Castiglione CM (1976) Monoamine oxidase and catechol-O- methyltransferase activities in cultured human skin fibroblasts. Life Sci 19: 1705–1710

    PubMed  CAS  Google Scholar 

  • Sandler M, Youdim MBH, Harrington E (1974) A phenylethylamine oxidizing defect in migraine. Nature (Lond) 250: 335–337

    CAS  Google Scholar 

  • Scanlon PD, Raymond FA, Weinshilboum RM (1979) Catechol-O-methyltransferase: thermolabile enzyme in erythrocytes of subjects homozygous for the allele for low activity. Science 203: 63–65

    PubMed  CAS  Google Scholar 

  • Schlesinger K, Harkins J, Deckard BS, Paden C (1975) Catechol-O-methyltransferase and monoamine oxidase activities in brains of mice susceptible and resistant to audiogenic seizures. J Neurobiol 6: 587–596

    PubMed  CAS  Google Scholar 

  • Seegmiller JE (1976) Inherited deficiency of hypoxanthine-guanine phosphoribosyl- transferase in X-linked uric aciduria (the Lesch-Nyhan syndrome and its variants). Advan Human Genet 6: 75–163

    CAS  Google Scholar 

  • Sladek-Chelgren S, Weinshilboum RM (1981) Catechol-O-methyltransferase biochemical genetics. Biochem Genet 19: 1037–1053

    PubMed  CAS  Google Scholar 

  • Spielman RS, Weinshilboum RM (1979) Family studies of low red cell COMT activity. Am J Hum Genet 31:63 A

    Google Scholar 

  • Spielman RS, Weinshilboum RM (1981) Genetics of red cell COMT activity: analysis of thermal stability and family data. Am J Med Genet 10: 279–290

    PubMed  CAS  Google Scholar 

  • Stolk JM, Hurst JH, Van Riper DA, Harris PQ (1979) Genetic analysis of serum dopamine-beta-hydroxylase activity in rats. Mol Pharmacol 16: 922–931

    PubMed  CAS  Google Scholar 

  • Swank RT, Bailey DW (1973) Recombinant inbred lines: value in the genetic analysis of biochemical variants. Science 181: 1249–1252

    PubMed  CAS  Google Scholar 

  • Tate SS, Sweet R, McDowell RH, Meister A (1971) Decrease of the 3,4-dihydroxy- phenylalanine ( DOPA) decarboxylase activities in human erythrocytes and mouse tissues after administration of DOPA. Proc Nat Acad Sci USA 68: 2121–2123

    PubMed  CAS  Google Scholar 

  • Tunnicliff G, Wimer CC, Wimer RE (1973) Relationships between neurotransmitter metabolism and behaviour in seven inbred strains of mice. Brain Res 61: 428–434

    PubMed  CAS  Google Scholar 

  • Vogel F, Motulsky AG (1979) Human Genetics, Problems and Approaches. Springer, New York

    Google Scholar 

  • Wallace EF, Krantz MJ, Lovenberg W (1973) Dopamine-beta-hydroxylase: a tetrameric glycoprotein. Proc Nat Acad Sci USA 70: 2253–2255

    PubMed  CAS  Google Scholar 

  • Weinshilboum RM (1977) Serum dopamine-beta-hydroxylase activity and blood pressure. Mayo Clinic Proc 52: 374–378

    CAS  Google Scholar 

  • Weinshilboum RM (1978 a) Human biochemical genetics of plasma dopamine-beta-hydroxylase and erythrocyte catechol-O-methyltransferase. Hum Genet Suppl I 101–112

    Google Scholar 

  • Weinshilboum RM (1978 b) Human erythrocyte catechol-O-methyltransferase: correlation with lung and kidney activity. Life Sci 22:625–630

    Google Scholar 

  • Weinshilboum RM (1978 c) Serum dopamine-beta-hydroxylase. Pharmacol Rev 30:133–166

    Google Scholar 

  • Weinshilboum RM (1979 a) Genetic regulation of catechol-O-methyltransferase. Soc Neurosci Symp 4:67–82

    Google Scholar 

  • Weinshilboum RM ( 1979 b) Catecholamine biochemical genetics in human populations. In: Breakefield XO (Ed) Neurogenetics: Genetic Approaches to the Nervous System. Elsevier, New York, pp 257–282

    Google Scholar 

  • Weinshilboum RM (1981) Enzyme thermal stability and population genetic studies: application to erythrocyte catechol-O-methyltransferase and plasma dopamine- beta-hydroxylase. In: Gershon ES, Matthysse S, Breakefield XO, Ciaranello RD (Eds) Genetic Strategies in Psychobiology and Psychiatry. Boxwood Press Pacific Grove, pp 79–94

    Google Scholar 

  • Weinshilboum R, Axelrod J (1971a) Serum dopamine-beta-hydroxylase. Cir Res 28: 307–315

    CAS  Google Scholar 

  • Weinshilboum RM, Axelrod J (1971b) Reduced plasma dopamine-beta-hydroxylase activity in familial dysautonomia. New Engl J Med 285: 938–942

    PubMed  CAS  Google Scholar 

  • Weinshilboum RM, Raymond FA (1976) Calcium inhibition of rat liver catechol-O-methyltransferase. Biochem Pharmacol 25: 573–579

    PubMed  CAS  Google Scholar 

  • Weinshilboum RM, Raymond FA (1977 a) Inheritance of low erythrocyte catechol-O-methyltransferase activity in man. Am J Hum Genet 29: 125–135

    PubMed  CAS  Google Scholar 

  • Weinshilboum RM, Raymond FA (1977 b) Variations in catechol-O-methytransferase activity in inbred strains of rats. Neuropharmacol 16: 703–706

    CAS  Google Scholar 

  • Weinshilboum RM, Raymond FA, Elveback LR, Weidman WH (1973) Serum dopamine-beta-hydroxylase activity: sibling-sibling correlation. Science 181: 943–945

    PubMed  CAS  Google Scholar 

  • Weinshilboum RM, Raymond FA, Elveback LR, Weidman WH (1974) Correlation of erythrocyte catechol-O-methyltransferase activity between siblings. Nature (Lond) 252: 490–491

    CAS  Google Scholar 

  • Weinshilboum RM, Schrott HG, Raymond FA, Weidman WH, Elveback LR (1975) Inheritance of very low serum dopamine-beta-hydroxylase activity. Am J Hum Genet 27: 573–585

    PubMed  CAS  Google Scholar 

  • Weinshilboum RM, Dunnette J, Raymond F, Kleinberg F (1978) Erythrocyte catechol-O-methyltransferase and plasma dopamine-beta-hydroxylase in human umbilical cord blood. Experientia 34: 310–311

    PubMed  CAS  Google Scholar 

  • Weinshilboum RM, Raymond FA, Frohnauer M (1979) Monogenic inheritance of catechol-O-methyltransferase in the rat: biochemical and genetic studies. Biochem Pharmacol 28: 1239–1248

    PubMed  CAS  Google Scholar 

  • Wetterberg L, Book JA, Floderus Y, Ross SB (1979) Genetics and biochemistry of schizophrenia in a defined population. In: Usdin E, Kopin IJ, Barchas J (Eds) Catecholamines: Basic and Clinical Frontiers. Pergamon Press, New York, pp 1857–1859

    Google Scholar 

  • Winter H, Herschel M, Propping P, Friedl W, Vogel F (1978) A twin study on three en-zymes (DBH, COMT, MAO) of catecholamine metabolism. Psychopharmacol 57: 63–69

    CAS  Google Scholar 

  • Wise CD, Bridge P, Potkin SB, Wyatt RJ (1979) Platelet monoamine oxidase: studies on the rate of heat inactivation in normal and in paranoid and nonparanoid chronic schizophrenic groups. Psychiat Res 1: 187–190

    CAS  Google Scholar 

  • Wurtman RJ, Axelrod J (1966) Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J Biol Chem 241: 2301–2305

    PubMed  CAS  Google Scholar 

  • Wyatt RJ, Murphy DL, Belmaker R, Cohen S, Donnelly CH, Pollin W (1973) Reduced monoamine oxidase activity in platelets: a possible genetic marker for vulnerability to schizophrenia. Science 173: 916–918

    Google Scholar 

  • Wyatt RJ, Potkin SG, Murphy DL (1979) Platelet monoamine oxidase activity in schizophrenia: a review of the data. Am J Psychiat 136:4A: 377–385

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weinshilboum, R.M. (1989). Catecholamine Biochemical Genetics. In: Trendelenburg, U., Weiner, N. (eds) Catecholamines II. Handbook of Experimental Pharmacology, vol 90 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73551-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73551-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73553-0

  • Online ISBN: 978-3-642-73551-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics