Catecholamines in the Central Nervous System

  • M. Palkovits
  • M. J. Brownstein
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 90 / 2)


Histochemical and biochemical studies have shown that catecholamines are present in almost all brain areas. Similarly, immunocytochemical studies have shown tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyl transferase (PNMT) immunoreactivity everywhere in the CNS in fiber-networks and nerve terminals. The catecholaminergic innervation of the brain may be characterized as a neuronal network with “open” (i.e. nonspecific) synapses as opposed to a chain of “point to point”, specific neuronal connections. Catecholamine-containing neurons in the brain have widespread efferent trajectories, rich aborization, abundant axon collaterals, and particularly large numbers of nerve terminals. A single aminergic cell may have anywhere from ten to one hundred thousand nerve terminals and innervate several cells in the CNS. Furthermore, a single neuron in the brain may be innervated by several catecholaminergic cells. Thus, chemical or mechanical lesions of individual catecholaminergic cell groups never result in the complete disappearance of catecholamines from other brain areas. Because of the overlapping pattern of catecholaminergic innervation in many brain regions, it is not easy to determine the origin and final destination of central catecholamine-containing fibers. Of course, there are pathways or projections along which catecholamine-containing axons travel. These are called dopaminergic, noradrenergic or adrenergic systems.


Ventral Tegmental Area Locus Coeruleus Median Eminence Medial Forebrain Bundle Olfactory Tubercle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ader J-P, Postema F, Korf J (1979) Contribution of the locus coeruleus to the adrenergic innervation of the rat spinal cord: a biochemical study. J Neural Transm 44: 159–173PubMedCrossRefGoogle Scholar
  2. Andén N-E, Carlsson A, Dahlstrom A, Fuxe K, Hillarp N-A, Larsson K (1966) Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol Scand 67: 313–326CrossRefGoogle Scholar
  3. Beart PM, Prosser D, Louis WJ (1979) Adrenaline and phenylethanolamine-N-methyl- transferase in rat medullary and anterior hypothalamic-preoptic nuclei. J Neurochem 33: 947–950PubMedCrossRefGoogle Scholar
  4. Ben-Ari Y, Zigmond RE, Moore KE (1978) Regional distribution of tyrosine hydroxylase, norepinephrine and dopamine within the amygdaloid complex of the rat. Brain Res 87: 96–101CrossRefGoogle Scholar
  5. Bertler A, Rosengren E (1959) Occurrence and distribution of catecholamines in brain. Acta Physiol Scand 47: 350–361PubMedGoogle Scholar
  6. Bjorklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Bjorklund A, Hdkfelt T (Eds) Classical Transmitters in the CNS, part I. Handbook of Chemical Neuroanatomy, vol 2. Elsevier, Amsterdam New York Oxford, pp 55–122Google Scholar
  7. Bjorklund A, Nobin A (1973) Fluorescence histochemical method and microfluorimetric mapping of dopamine and noradrenaline cell groups in the rat diencephalon. Brain Res 51: 193–205PubMedCrossRefGoogle Scholar
  8. Bjorklund A, Moore RY, Nobin A, Stenevi U (1973) The organization of tuberohypo- physeal and reticuloinfundibular catecholamine neuron systems in the rat brain. Brain Res 51: 121–191Google Scholar
  9. Bjorklund A, Lindvall O, Nobin A (1975) Evidence of an incertohypothalamic dopamine neurone system in the rat. Brain Res 89: 29–42PubMedCrossRefGoogle Scholar
  10. Bjorklund A, Divac I, Lindvall O (1978) Regional distribution of catecholamines in monkey cerebral cortex, evidence for a dopaminergic innervation of the primate prefrontal cortex. Neurosci Lett 7: 115–119PubMedCrossRefGoogle Scholar
  11. Brown RM, Crane AM, Goldman PS (1979) Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res 168: 133–150PubMedCrossRefGoogle Scholar
  12. Brownstein M, Saavedra JM, Palkovits M (1974) Norepinephrine and dopamine in the limbic system of the rat. Brain Res 79: 431–436PubMedCrossRefGoogle Scholar
  13. Commissiong JW, Hellstrom SO, Neff NH (1978) A new projection from locus coeruleus to the spinal ventral columns: histochemical and biochemical evidence. Brain Res 148: 207–213PubMedCrossRefGoogle Scholar
  14. Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 232: 1–55Google Scholar
  15. Demarest KT, Alper RH, Moore KE (1979) Dopa accumulation is a measurement of Catecholamines in the Central Nervous System dopamine synthesis in the median eminence and posterior pituitary. J Neural Transm 46: 183–193PubMedCrossRefGoogle Scholar
  16. Emson PC, Koob GF (1978) The origin and distribution of dopamine-containing afferents to the rat frontal cortex. Brain Res 142: 249–267PubMedCrossRefGoogle Scholar
  17. Emson PC, Bjorklund A, Lindvall O, Paxinos G (1979) Contributions of different afferent pathways to the catecholamine and 5-hydroxytryptamine innervation of the amygdala: a neurochemical and histochemical study. Neuroscience 4: 1347–1357PubMedCrossRefGoogle Scholar
  18. Fallon JH, Moore RY (1978a) Catecholamine innervation of the basal forebrain. III. Olfactory bulb, anterior olfactory nuclei, olfactory tubercle and piriform cortex. J Comp Neurol 180: 533–544PubMedCrossRefGoogle Scholar
  19. Fallon JH, Moore RY (1978b) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180: 545–580PubMedCrossRefGoogle Scholar
  20. Fallon JH, Koziell DA, Moore RY (1978) Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol 180: 509–532PubMedCrossRefGoogle Scholar
  21. Farley I J, Horny kiewicz O (1977) Noradrenaline distribution in subcortical areas of the human brain. Brain Res 126: 53–62PubMedCrossRefGoogle Scholar
  22. Farley I J, Price KS, Hornykiewicz O (1977) Dopamine in the limbic regions of the human brain: normal and abnormal. Adv Biochem Psychopharmacol 16: 57–64PubMedGoogle Scholar
  23. Fuxe K, Hokfelt T (1966) Further evidence for the existence of tuberoinfundibular dopamine neurons. Acta Physiol Scand 66: 245–246PubMedCrossRefGoogle Scholar
  24. van der Gugten J, Palkovits M, Wijnen HLJM, Versteeg DHG (1976) Regional distribution of adrenaline in rat brain. Brain Res 107: 171–175PubMedCrossRefGoogle Scholar
  25. Halasz N, Ljungdahl A, Hokfelt T, Johansson O, Goldstein M, Park D, Biberfeld P (1977) Transmitter histochemistry of the rat olfactory bulb I. Immunohistochemical localization of monoamine synthesizing enzymes, supports for intrabulbar, periglomerular dopamine neurons. Brain Res 126: 455–476PubMedCrossRefGoogle Scholar
  26. Hokfelt T, Fuxe K, Goldstein M, Johansson O (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66: 235–251CrossRefGoogle Scholar
  27. Hokfelt T, Philipson O, Goldstein M (1979) Evidence for a dopaminergic pathway in the rat descending from All cell group to the spinal cord. Acta Physiol Scand 107: 393–395PubMedCrossRefGoogle Scholar
  28. Hokfelt T, Johansson O, Goldstein M (1984a) Central catecholamine neurons as revealed by immunohistochemistry with special reference to adrenaline neurons. In: Bjorklund A, Hokfelt T (Eds) Classical Transmitters in the CNS, part I, Elsevier, Amsterdam New York Oxford, pp 157–276 Handbook of Chemical Neuroanatomy, vol 2Google Scholar
  29. Hokfelt T, Martensson R, Bjorklund A, Kleinau S, Goldstein M (1984b) Distributional maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain. In: Bjorklund A, Hokfelt T (Eds) Classical Transmitters in the CNS, Handbook of Chemical Neuroanatomy, vol 2 part I, Elsevier, Amsterdam New York Oxford, pp 277–379Google Scholar
  30. Jacobowitz DM (1978) Monoaminergic pathways in the central nervous system. In: Lipton MA, DiMascio A, Killam KF (Eds) Psychopharmacology: A Generation of Progress, Raven Press, New York, pp 119–129Google Scholar
  31. Jacobowitz DM, Palkovits M (1974) Topographic atlas of catecholamine and acetyl- cholinesterase-containing neurons in the rat brain. I. Forebrain ( Telencephalon, Diencephalon). J Comp Neurol 157: 13–28PubMedCrossRefGoogle Scholar
  32. Kizer JS, Palkovits M, Tappaz M, Kebabian J, Brownstein MJ (1976 a) Distribution of releasing factors, biogenic amines, and related enzymes in the bovine median eminence. Endocrinology 98: 685–695PubMedCrossRefGoogle Scholar
  33. Kizer JS, Palkovits M, Brownstein MJ (1976 b) The projections of the A8, A9 and A10 dopaminergic cell bodies: evidence for a nigral-hypothalamic-median eminence dopaminergic pathway. Brain Res 108: 363–370PubMedCrossRefGoogle Scholar
  34. Kizer JS, Muth E, Jacobowitz DM (1976 c) The effect of bilateral lesions of the ventral noradrenergic bundle on endocrine-induced changes of tyrosine hydroxylase in the rat median eminence. Endocrinology 98: 886–893PubMedCrossRefGoogle Scholar
  35. Kobayashi RM, Palkovits M, Kopin IJ, Jacobowitz DM (1974) Biochemical mapping of noradrenergic nerves arising from the rat locus coeruleus. Brain Res 77: 269–279PubMedCrossRefGoogle Scholar
  36. Koob GF, Balcom JG, Meyerhoff JL (1975) Dopamine and norepinephrine levels in the nucleus accumbens, olfactory tubercle and corpus striatum following lesions in the ventral tegmental area. Brain Res 94: 44–45CrossRefGoogle Scholar
  37. Kopp N, Denoroy L, Renaud B, Pujol JF, Tabib A, Tommasi M (1979) Distribution of adrenaline-synthesizing enzyme activity in the human brain. J Neurol Sci 41: 397–409PubMedCrossRefGoogle Scholar
  38. Koslow SH, Schlumpf M (1974) Quantitation of adrenaline in rat brain nuclei and areas by mass fragmentography. Nature 251: 530–531PubMedCrossRefGoogle Scholar
  39. Kvetnansky R, Palkovits M, Mitro A, Torda T, Mikulaj L (1977) Catecholamines in individual hypothalamic nuclei of acutely and repeatedly stressed rats. Neuroendo- crinology 23: 257–267CrossRefGoogle Scholar
  40. Laverty R, Sharman DF (1965) The estimation of small quantities of 3,4-dihydroxy-phenylethylamine in tissues. Br J Pharmacol Chemother 24: 538–548PubMedGoogle Scholar
  41. Levitt P, Moore RY (1979) Origin and organization of brainstem catecholamine innervation in the rat. J Comp Neurol 186: 505–528PubMedCrossRefGoogle Scholar
  42. Lew JY, Matsumoto Y, Pearson J, Goldstein M, Hokfelt T, Fuxe K (1977) Localization and characterization of phenylethanolamine N-methyltransferase in the brain of various mammalian species. Brain Res 119: 199–210PubMedCrossRefGoogle Scholar
  43. Lindvall O (1979) Dopamine pathways in the rat brain. In: Horn AS, Korf J, Westerink BHC (Eds) The Neurobiology of Dopamine. Academic Press, London New York San Francisco, pp 319–342Google Scholar
  44. Lindvall O, Bjorklund A (1978) The organization of the ascending catecholamine neuron systems in the rat brain. Acta Physiol Scand 412 (Suppl):l48–48Google Scholar
  45. McGeer PL, McGeer EG, Wada JA (1963) Central aromatic amine levels and behavior. II. Serotonin and catecholamine levels in various cat brain areas following administration of psychoactive drugs or amine precursors. Arch Neurol (Chicago) 9: 81–89Google Scholar
  46. Mefford I, Oke A, Keller R, Adams RN, Jonsson G (1978) Epinephrine distribution in human brain. Neurosci Lett 9: 227–231PubMedCrossRefGoogle Scholar
  47. Metcalf G (1974) The use of stereotaxic dissection followed by fluorimetric assay, to determine the distribution of noradrenaline, dopamine and 5-HT in the preoptic hypothalamic area of rabbit brain: an alternative approach to histochemistry. Br J Pharmacol 50: 189–195PubMedGoogle Scholar
  48. Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2: 113–168PubMedCrossRefGoogle Scholar
  49. Moore RY, Card JP (1984) Noradrenaline-containing neuron system. In: Bjorklund A, Hokfelt T (Eds). Classical Transmitters in the CNS, Handbook of Chemical Neuroanatomy, vol 2 part I, Elsevier, Amsterdam New York Oxford, pp 123–156Google Scholar
  50. Moyer JA, Herrenkohl LR, Jacobowitz DM (1978) Stress during pregnancy: effect on catecholamines in discrete brain regions of offspring as adults. Brain Res 144: 173–178PubMedCrossRefGoogle Scholar
  51. Nygren L-G, Olson L (1977) A new major projection from locus coeruleus: the main source of noradrenergic nerve terminals in the ventral and dorsal columns of the spinal cord. Brain Res 132: 85–93PubMedCrossRefGoogle Scholar
  52. O’Donohue TL, Crowley WR, Jacobowitz DM (1979) Biochemical mapping of the noradrenergic ventral bundle projection sites: evidence for a noradrenergic-dopaminergic interaction. Brain Res 172: 87–100PubMedCrossRefGoogle Scholar
  53. Olson L, Fuxe K (1971) On the projections from the locus coeruleus noradrenaline neurons: the cerebellar innervation. Brain Res 28: 165–171PubMedCrossRefGoogle Scholar
  54. Palkovits M, Jacobowitz DM (1974) Topographic atlas of catecholamine and acetyl- cholinesterase-containing neurons in the rat brain. II. Hindbrain ( Mesencephalon, Rhombencephalon). J Comp Neurol 157: 29–42PubMedCrossRefGoogle Scholar
  55. Palkovits M, Brownstein M, Saavedra JM, Axelrod J (1974) Norepinephrine and dopamine content of hypothalamic nuclei of the rat. Brain Res 77: 137–149PubMedCrossRefGoogle Scholar
  56. Palkovits M, Zaborszky L, Brownstein MJ, Fekete MIK, Herman JP, Kanyicska B (1979) Distribution of norepinephrine and dopamine in cerebral cortical areas of the rat. Brain Res Bull 4: 593–601PubMedCrossRefGoogle Scholar
  57. Palkovits M, Mezey E, Zaborszky L, Feminger A, Versteeg DHG, Wijnen HJLM, de Jong W, Fekete MIK, Herman JP, Kanyicska B (1980a) Adrenergic innervation of the rat hypothalamus. Neurosci Lett 18: 237–243PubMedCrossRefGoogle Scholar
  58. Palkovits M, Zaborszky L, Feminger A, Mezey E, Fekete MIK, Herman JP, Kanyicska B, Szabo D (1980b) Noradrenergic innervation of the rat hypothalamus: experimental biochemical and electron microscopic studies. Brain Res 191: 161–171PubMedCrossRefGoogle Scholar
  59. Pasquier DA, Gold MA, Jacobowitz DM (1980) Noradrenergic perikarya (A5-A7, sub coeruleus) projections to the rat cerebellum. Brain Res 196: 270–275PubMedCrossRefGoogle Scholar
  60. Roizen MF, Kobayashi RM, Muth EA, Jacobowitz DM (1976) Biochemical mapping of noradrenergic projections of axons in the dorsal noradrenergic bundle. Brain Res 104: 384–389PubMedCrossRefGoogle Scholar
  61. Ross RA, Reis DJ (1974) Effects of lesions of locus coeruleus on regional distribution of dopamine-P-hydroxylase activity in rat brain. Brain Res 73: 161–166PubMedCrossRefGoogle Scholar
  62. Saavedra JM, Zivin J (1976) Tyrosine hydroxylase and dopamine-P-hydroxylase: distribution in discrete areas of the rat limbic system. Brain Res 105: 517–524PubMedCrossRefGoogle Scholar
  63. Saavedra JM, Brownstein M, Palkovits M, Kizer S, Axelrod J (1974 a) Tyrosine hydroxylase and dopamine-P-hydroxylase: distribution in the individual rat hypothalamic nuclei. J Neurochem 23: 869–871PubMedCrossRefGoogle Scholar
  64. Saavedra JM, Palkovits M, Brownstein MJ, Axelrod J (1974b) Localization of phenyl- thanolamine N-methyl transferase in the rat brain nuclei. Nature 248: 695–696PubMedCrossRefGoogle Scholar
  65. Saavedra JM, Grobecker H, Zivin J (1976 a) Catecholamines in the raphe nuclei of the rat. Brain Res 114: 339–345CrossRefGoogle Scholar
  66. Saavedra JM, Brownstein MJ, Kizer JS, Palkovits M (1976b) Biogenic amines and related enzymes in the circumventricular organs of the rat. Brain Res 107: 412–417PubMedCrossRefGoogle Scholar
  67. Skagerberg G, Bjorklund A, Lindvall O, Schmidt RH (1982) Origin and termination of the diencephalo-spinal dopamine system in the rat. Brain Res Bull 9: 237–244PubMedCrossRefGoogle Scholar
  68. Speciale SG, Crowley WR, O’Donohue TL, Jacobowitz DM (1978) Forebrain catechol¬amine projections of the A5 cell groups. Brain Res 154: 128–133PubMedCrossRefGoogle Scholar
  69. Thoa NB, Tizabi Y, Jacobowitz DM (1977) Effect of isolation on catecholamine concentration and turnover in discrete areas of rat brain. Brain Res 131: 259–269PubMedCrossRefGoogle Scholar
  70. Tizabi Y, Thoa NB, Maengwyn-Davies GD, Kopin IJ, Jacobowitz DM (1979) Behavioral correlation of catecholamine concentration and turnover in discrete brain areas of three strains of mice. Brain Res 166: 199–205PubMedCrossRefGoogle Scholar
  71. Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand 367 (Suppl):l48–48Google Scholar
  72. Versteeg D, van der Gugten J, van Ree JH (1975) Regional turnover and synthesis of catecholamine in rat hypothalamus. Nature 256: 502–503PubMedCrossRefGoogle Scholar
  73. Versteeg DHG, van der Gugten J, de Jong W, Palkovits M (1976) Regional concentrations of noradrenaline and dopamine in rat brain. Brain Res 113: 563–574PubMedCrossRefGoogle Scholar
  74. Vogel WH, Lewis LE, Boehme DH (1976) Phenylethanolamine-N-methyltransferase activity in various areas of human brain, tissues and fluids. Brain Res 115: 357–359PubMedCrossRefGoogle Scholar
  75. Wada JA, McGeer EG (1966) Central aromatic amines and behavior. III. Correlative analysis of conditioned approach behavior and brain levels of serotonin and catecholamines in monkeys. Arch Neurol (Chicago) 14: 129–142Google Scholar
  76. Zaborszky L, Brownstein MJ, Palkovits M (1977) Ascending projections to the hypothalamus and limbic nuclei from the dorsolateral pontine tegmentum: a biochemical and electron microscopic study. Acta Morphol Acad Sci Hung 25: 175–188PubMedGoogle Scholar
  77. Zivin J A, Reid JL, Saavedra JM, Kopin KJ (1975) Quantitative localization of biogenic amines in the spinal cord. Brain Res 99: 293–301PubMedCrossRefGoogle Scholar
  78. Zivin JA, Reid JL, Tappaz ML, Kopin KJ (1976) Quantitative localization of tyrosine hydroxylase, dopamine-p-hydroxylase, phenylethanolamine-N-methyl transferase, and glutamic acid decarboxylase in spinal cord. Brain Res 105: 151–156PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • M. Palkovits
  • M. J. Brownstein

There are no affiliations available

Personalised recommendations