Advertisement

Biological Aspects of Course and Outcome in Depressive Illness: Needed Areas of Research

Conference paper
  • 18 Downloads

Abstract

On the basis of the results obtained in clinical biologic-psychiatric depression research, prediction of course and outcome in a depressive illness is still not possible. Nevertheless, in the past decade a number of different groups have worked out quite a few interesting outlines for elucidating the questions treated in this symposium and which must be further pursued.

Keywords

Depressed Patient Vasoactive Intestinal Polypeptide Growth Hormone Response Depressive Illness Dexamethasone Suppression Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angst J (1983) The origins of depression: current concepts and approaches (Dahlem Konferenzen). Life Sciences Research Report 26. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  2. Ansseau M, Scheyvaerts M, Doumont A, Poirrier R, Legros JJ, Franck G (1984) Concurrent use of REM latency, dexamethasone suppression, clonidine, and apomorphine tests as biological markers of endogenous depression: a pilot study. Psychiatry Res 12:261–272PubMedCrossRefGoogle Scholar
  3. Åsberg M, Martensson B, Wägner A (1985) Biochemical markers of serotonin functions in depression and suicidal behaviour. In: Hippius H, Klerman G, Matussek N (eds) New results in depression research. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  4. Ballenger JC, Goodwin FK, Major LF, Brown GC (1979) Alcohol and central serotonin metabolism in man. Arch Gen Psychiatry 36:224–227PubMedGoogle Scholar
  5. Benkert O, Renz A, Matussek N (1973) Dopamine, noradrenaline, 5-hydroxytryptamine in relation to motor activity, fighting and mounting behaviour. II. L-Dopa and DL-threodihydroxyphenyl-alanine. Neuropharmacology 12:187–193PubMedCrossRefGoogle Scholar
  6. Bonham Carter SM, Sandler M, Goodwin BL, Sepping P, Bridges PK (1978) Decreased urinary output of tyramine and its metabolites in depression. Br J Psychiatry 132:125–132PubMedCrossRefGoogle Scholar
  7. Bonham Carter SM, Revely MA, Sandler M, Dewhurst J, Little BC, Hayworth J, Priest RG (1980) Decreased urinary output of conjugated tyramine is associated with lifetime vulnerability of depressive illness. Psychiatry Res 3:13–31PubMedCrossRefGoogle Scholar
  8. Boyer P, Schaub C, Guelfi JD, Nassiet J, Pichot P (1983) Growth hormone response to hypothalamic-a-receptor stimulation in depressive states. VII. World congress of Psychiatry, ViennaGoogle Scholar
  9. Brown GL, Friend WC, Chambers JW (1979) Neuropharmacology of hypothalamic-pituitary regulation. In: Tolis G, Labrie F, Martin JB, Naftolin F (eds) Clinical neuroendocrinology. A pathophysiological approach. Raven Press, New York, pp 47–81Google Scholar
  10. Brown GL, Goodwin FK, Bunney WE (1982a) Human aggression and suicide: their relationship to neuropsychiatric diagnoses and serotonin metabolism. In: Ho BT et al. (eds) Serotonin in biological psychiatry. Raven Press, New York, pp 287–307Google Scholar
  11. Brown GL, Ebert MH, Goyer PF, Jimerson DC, Klein WJ, Bunney WE, Goodwin FK (1982b) Aggression, suicide, and serotonin: relationships to CSF amine metabolites. Am J Psychiatry 139:741–746PubMedGoogle Scholar
  12. Brunello N, Barbaccia ML, Chuang DM, Costa E (1982) Downregulation of ß-adrenergic receptors following repeated injections of desmethylimipramine. permissive role of serotonergic axons. Neuropharmacology 21:1145–1149PubMedCrossRefGoogle Scholar
  13. Bunney WE, Davis JM (1985) Norepinephrine in depressive reactions. Arch Gen Psychiatry 13:483Google Scholar
  14. Charney DS, Heninger GR, Sternberg DE, Hafstad KM, Ginnings S, Landis DH (1982a) Adrenergic receptor sensitivity in depression: effects of clonidine in depressed patients and healthy subjects. Arch Gen Psychiatry 39:290–294PubMedGoogle Scholar
  15. Charney DS, Heninger GR, Sternberg DE (1982b) Failure of chronic antidepressant treatment to alter growth hormone response to clonidine. Psychiatry Res 7:135–138PubMedCrossRefGoogle Scholar
  16. Charney DS, Heninger GR, Sternberg DE (1984) The effect of mianserin on alpha-2 adrenergic receptor function in depressed patients. Br J Psychiatry 144:407–416PubMedCrossRefGoogle Scholar
  17. Checkley SA (1979) Corticosteroid and growth hormone responses to methylamphetamine in depressive illness. Psychol Med 9:107–115PubMedCrossRefGoogle Scholar
  18. Checkley SA, Crammer JL (1977) Hormone responses to methylamphetamine in depression: a new approach to the noradrenaline depletion hypothesis. Br J Psychiatry 131:582–586PubMedCrossRefGoogle Scholar
  19. Checkley SA, Slade AP, Shur E (1981) Growth hormone and other responses to clonidine in patients with endogenous depression. Br J Psychiatry 138:51–55PubMedCrossRefGoogle Scholar
  20. Chekley SA, Glass IB, Thompson C, Corn T, Robinson P (1984) The GH response to clonidine in endogenous as compared with reactive depression. Psychol Med 14:773–777CrossRefGoogle Scholar
  21. Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237–1264PubMedCrossRefGoogle Scholar
  22. Corn TH, Honig A, Thompson C, Bridges PK, Bartlett JR, Checkley SA (1984a) A neuroendocrine study of stereotactic subcaudate tractotomy. Br J Psychiatry 144:417–420PubMedCrossRefGoogle Scholar
  23. Corn TH, Thompson C, Checkley SA (1984b) Effects of desipramine treatment upon central adrenoreceptor function in normal subjects. Br J Psychiatry 145:139–145PubMedCrossRefGoogle Scholar
  24. Enna SJ, Karbon EW, Duman RS (1984) GABA-B-agonists and imipramine-induced modifications in rat brain, beta-adrenergic receptor binding and function. Symposium International “GABA et les Maladies Affectives: Approche Expérimentale et Clinique,” Paris, 1984Google Scholar
  25. Eriksson E, Eden S, Modigh K (1981) Importance of norepinephrine alpha-2-receptor activation for morphine-induced rat growth hormone secretion. Neuroendocrinology 33:91–96PubMedCrossRefGoogle Scholar
  26. Everett GM, Toman JEP (1959) Mode of action of Rauwolfia alkaloids and motor activity. In: Masserman JH (ed) Biological Psychiatry, vol 1. Grune and Stratton, New YorkGoogle Scholar
  27. Garattini S, Giacolone E, Valzelli L (1967) Isolation, aggressiveness and brain 5-hydroxytryptamine turnover. J Pharm Pharmacol 19:338–339PubMedCrossRefGoogle Scholar
  28. Gjerris A, Fahrenkrug J, Bojholm S, Rafaelsen OJ (1981a) Vasoactive intestinal polypeptide (VIP) in cerebrospinal fluid in psychiatric disorders. In: Perris C, Struwe G, Jansson B (eds) Biological psychiatry. Elsevier/Biochemical, Amsterdam, pp 359–362Google Scholar
  29. Gjerris A, Jensen E, Christensen NJ, Rafaelsen O (1981b) Adrenaline and noradrenaline in psychiatric disorders. In: Perris C, Struwe G, Jansson B (eds) Biological psychiatry. Elsevier/North-Holland and Biomedical, Amsterdam, pp 565–568Google Scholar
  30. Glass IB, Checkley SA, Shur E, Dowling S (1982) The effect of desipramine upon central adrenergic function in depressed patients. Br J Psychiatry 141:372–376PubMedCrossRefGoogle Scholar
  31. Hale AS, Walker PL, Bridges PK, Sandler M (1986) Tyramine conjugation deficit as a trait-marker for endogeneous depressive illness. J Psychiatr Res 20:251–261PubMedCrossRefGoogle Scholar
  32. Harrison WM, Cooper TB, Stewart JW, Quitkin FM, McGrath PJ, Leibowitz MR, Rabkin JR, Markowitz JS, Klein DF (1984) The tyramine challenge test as a marker for melancholia. Arch Gen Psychiatry 41: 681–685PubMedGoogle Scholar
  33. Höhe M, Valido G, Matussek N (1986) Growth hormone response to clonidine in endogenous depressive patients: evidence for a trait marker in depression. In: Shagass C, Iosiassen EC, Bridger WH, Weiss KJ, Stoff D, Simpson GM (eds) Biological psychiatry 1985. Proc. IVth world congress of biological psychiatry. Elsevier, New York, pp 862–864 (Developments in psychiatry, vol 7)Google Scholar
  34. Janowsky A, Okaka F, Manier DH, Applegate CD, Sulser F (1982) Role of serotonergic input in the regulation of the ß-adrenergic receptor-coupled adenylate cyclase system. Science 218:900–901PubMedCrossRefGoogle Scholar
  35. Kunos G (1980) Reciprocal changes in a-and ß-adrenoreceptor reactivity — myth or reality? Trends Pharmacol Sci 7:282–284CrossRefGoogle Scholar
  36. Kupfer DJ, Rush AJ (1983) Recommendations for depression publications. Psychiatry Res 8:238–240PubMedCrossRefGoogle Scholar
  37. Laakmann G (1980) Beeinflussung der Hypophysenvorderlappen-Hormonsekreation durch Antidepressiva bei gesunden Probanden, neurotisch and endogen depressiven Patienten. Nervenarzt 51:725–732PubMedGoogle Scholar
  38. Laakmann G, Wittmann M, Schoen HW, Zygan K, Weiss A, Meissner R, Mueller OA, Stalla GK (1986a) Effects of receptor blockers (methysergide, propranolol, phentolamine, yohimbine, and prazosin) on the desimipramine-induced pituitary hormone stimulations in humans. Part III: PHA axis. Psychoneuroendocrinology 11:475–489PubMedCrossRefGoogle Scholar
  39. Laakmann G, Zygan K, Schoen HW, Weiss A, Wittmann M, Meissner R, Blaschke D (1986b) Effects of receptor blockers (methysergide, propranolol, phentolamine, yohimbine, and prazosin) on the desimipramine-induced pituitary hormone stimulation in humans. Part I: Growth hormone. Psychoneuroendocrinology 11:447–461PubMedCrossRefGoogle Scholar
  40. Lapin IP, Oxenkrug GF (1969) Intensification of the central serotonergic processes as a possible determinant of the thymoleptic effect. Lancet I:132CrossRefGoogle Scholar
  41. Lycke E, Modigh K, Roos B-E (1969) Aggression in mice associated with changes in the monoamine metabolism of the brain. Experientia 25:951–953PubMedCrossRefGoogle Scholar
  42. Matussek N (1966) Neurobiologie und Depression. Med Wochenschr 20:109Google Scholar
  43. Matussek N (1980) Stoffwechselpathologie der Zyklothymie und Schizophrenie. In: Kisker KP, Meyer JE, Müller C, Strömgren E (eds) Psychiatrie der Gegenwart, vol I/2. Springer, Berlin Heidelberg New York, pp 65–113Google Scholar
  44. Matussek N, Ackenheil M, Hippius H, Müller F, Schröder H-Th, Schultes H, Wasilewski B (1980) Effect of clonidine on growth hormone release in psychiatric patients and controls. Psychiatry Res 2:25–36PubMedCrossRefGoogle Scholar
  45. Matussek N, Ackenheil M, Herz M (1984) The dependence of the clonidine growth hormone test on alcohol drinking habits and the menstrual cycle. Psychoneuroendocrinology 9:173–177PubMedCrossRefGoogle Scholar
  46. Matussek N, Ackenheil M, Höhe M, Müller-Spahn F (1986) Clonidine growth-hormone stimulation test in depressive patients before and after treatment: results and methodological considerations. In: Shagass C, Tosiassen RC, Bridger WH, Weiss KJ, Stoff D, Simpson GM (eds) Biological psychiatry 1985. Proc. IVth world congress of biological psychiatry. Elsevier, New York, pp 788–790 (Developments in psychiatry, vol 7)Google Scholar
  47. van Praag HM (1969) Monoamines and depression. Pharmakopsychiatrie 2:151–160CrossRefGoogle Scholar
  48. van Praag HM, de Haan S (1979) Central serotonin metabolism and the frequency of depression. Psychiatry Res 1:219–224PubMedCrossRefGoogle Scholar
  49. Prange AJ, Loosen PT (1984) Peptides in depression. In: Usdin E, Asberg M, Bertilsson L, Sjöqvist F (eds) Frontiers in biochemical and pharmacological research in depression, vol 39. Raven Press, New York, pp 127–145Google Scholar
  50. Rehavi M, Skolnick P, Paul SM (1984) High-binding sites for tricyclic antidepressants in brain and platelets. In: Marangos PJ, Campell IC, Cohen RM (eds) Academic Press, London, pp 279–295Google Scholar
  51. Sandler M, Bonham Carter SM, Cuthbert MF, Pare CMB (1975) Is there an increase in monoamine oxidase activity in depressive illness? Lancet 1:1045–1049PubMedCrossRefGoogle Scholar
  52. Sandler M, Bonham Carter SM, Walker PL (1983) Tyramine conjugation deficit as a trait-marker in depression. Psychopharmacol Bull 19:501–502Google Scholar
  53. Sawa Y, Odo S, Nakasawa T (1982) Growth hormone secretion by tricyclic and non-tricyclic antidepressants in healthy volunteers and depressives. In: Kanger SZ, Takahashi R, Segawa T, Briley M (eds) New vistas in depression. Pergamon, New York, pp 309–315Google Scholar
  54. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509Google Scholar
  55. Sedvall G, Fyrö B, Gullberg B, Nybäck H, Wiesel F-A, Wode-Helgodt B (1980) Relationships in healthy volunteers between concentrations of monoamine metabolites in cerebrospinal fluid and family history of psychiatric morbidity. Br J Psychiatry 136:366–374PubMedCrossRefGoogle Scholar
  56. Siever LS, Uhde TW, Silberman EK, Jimerson DC, Aloi JA, Post RM, Murphy DL (1982a) The growth hormone response to clonidine as a probe of noradrenergic receptor responsiveness in affective disorder patients and controls. Psychiatry Res 6:171–183PubMedCrossRefGoogle Scholar
  57. Siever LS, Uhde TW, Insel TR, Roy BF, Murphy DL (1982b) Growth hormone response to clonidine unchanged by chronic chlorgyline treatment. Psychiatry Res 7:139–144 Sulser F (1982) Antidepressant drug research: its impact on neurobiology and psychobiology. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven Press, New York, pp 1–20Google Scholar
  58. Tagliamonte A, Tagliamonte P, Gessa GL, Brodie BB (1969) Compulsive sexual activity induced by p-chorophenylalanine in normal and pinealectomized male rats. Science 166:1433–1435PubMedCrossRefGoogle Scholar
  59. Thorén P, Asberg M, Bertilson L, Mellström B, Sjöqvist F, Träskman L (1980) Chlorimipramine treatment of obsessive-compulsive disorder. Part I. Biochemical aspects. Arch Gen Psychiatry 37:1289–1295PubMedGoogle Scholar
  60. U’Prichard DC (1984) Biochemical characteristics and regulation of brain a-2-adrenoreceptors. In: Salama AI (ed) Presynaptic modulation of postsynaptic receptors in mental diseases. Ann NY Acad Sci 430:55–75Google Scholar
  61. Walletschek H, Raab A (1982) Spontaneous activity of dorsal raphe neurons during defensive and offensive encounters in the tree-shrew. Psychol Behav 28:697–705Google Scholar
  62. Asberg M, Thoren P, Traskman L, Bertilsson L, Ringleergern N (1976) Serotonin depression: a biochemical sub-group within the affective disorders. Science 191:478–479PubMedCrossRefGoogle Scholar
  63. Ballin J, Gottfries C-G, Karlsson I (1983) Dexamethasone suppression test and serum prolactin in dementia disorders. Br J Psychiatry 143:277–278CrossRefGoogle Scholar
  64. Bartrop RW, Lazarus L, Luckhurst E, Kiloh LG, Penny R (1977) Depressed lymphocyte function after bereavement. Lancet I:884–886Google Scholar
  65. Born GVR, Gragnani G, Martin K (1980) Long-term effects of lithium on the uptake of 5hydroxytryptamine by human platelets. Br J Clin Pharmacol 8:321–326Google Scholar
  66. Brown GM, Ebert MH, Goyer PF, Jimerson DC, Klein WJ, Bunney WE, Goodwin FK (1982) Aggression, suicide and serotonin: relationships to CSF amine metabolites. Am J Psychiatry 139:741–746PubMedGoogle Scholar
  67. Briley MS, Raisman R, Langer SZ (1979) Human platelets possess high affinity binding sites for H-imipramine. Eur J Pharmacol 58:347–348PubMedCrossRefGoogle Scholar
  68. Briley MS, Langer SZ, Raisman R, Sechter D, Zarifian E (1980) H-Imipramine binding sites are decreased in platelets of untreated depressed patients. Science 303:1209–1210Google Scholar
  69. Carroll BJ (1978) Neuroendocrine function in psychiatric disorders. In: Lipton MA, Di Maschio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven, New York, pp 487–497Google Scholar
  70. Carroll BJ, Feinberg M, Steiner M, Haskett RF, James N, Tarika J (1980). Diagnostic application of the dexamethasone suppression test in depressed outpatients. Adv Biol Psychiatry 5:107–116Google Scholar
  71. Coppen A, Swade C, Wood K (1978). Platelet 5-hydroxytryptamine accummulation in depressive illness. Clin Chim Acta 87:165–168PubMedCrossRefGoogle Scholar
  72. De Montigny C, Aghajanian GK (1978) Tricyclic antidepressants: long-term treatment increases responsivity of rat forebrain neurons to serotonin. Science 202:1310–1306CrossRefGoogle Scholar
  73. Elliott JM (1984) Platelet receptor binding studies in affective disorders. J Affective Disord 6:219–239CrossRefGoogle Scholar
  74. Extein I, Tallman J, Smith CC (1979) Changes in lymphocyte beta adrenergic receptors in depression and mania. Psychiatry Res 1:191–197PubMedCrossRefGoogle Scholar
  75. Garcia-Seville JA, Zis AP, Zelnick JC, Smith CB (1981) Tricyclic antidepressant treatment decreases a2-adrenoceptors on human platelet membranes. Eur J Pharmacol 69:121–123CrossRefGoogle Scholar
  76. Healy D, Carney PA, Leonard BE (1983) Monoamine related markers of depression: changes following treatment. J Psychiatr Res 17:251–260CrossRefGoogle Scholar
  77. Healy D, Carney PA, Leonard BE (1985) Circadian abnormalities in 5-HT uptake in depression. In: Redfern PA, Campbell IC, Davies JA, Martin KF (eds) Circadian rhythms in the central nervous system. MacMillan, LondonGoogle Scholar
  78. Jankovic DA, Isakovic K (1973) Neuroendocrine correlates of immune response. Int Arch Allergy 45:360–372PubMedCrossRefGoogle Scholar
  79. Judd LL, Risch SC, Parker DC, Janowsky DS, Segal DS, Huey LY (1982) The effect of a methadone challenge on the prolactin and growth hormone responses of psychiatric patients and normal controls. Psychopharmac Bull 18:204–212Google Scholar
  80. Kafka MS, van Kammen DP, Kleinman JE (1980) Alpha adrenergic receptor function in schizoprenia, affective disorders and some neurological diseases. Comm Psychopharmacol 4:477–486Google Scholar
  81. Kafka MS, Wirz-Justice A, Naber D, Marangos PJ, O’Donohue TL, Wehr A (1982) The effect of lithium on circadian neurotransmitter receptor rhythms. Neuropsychobiology 8:41–50PubMedCrossRefGoogle Scholar
  82. Kronfol Z, Silva J, Greden J, Dembinski S, Gardner R, Carroll B (1983) Impaired lymphocyte function in depressive illness. Life Sci 33:241–247PubMedCrossRefGoogle Scholar
  83. Leonard BE (1982) Current status of the biogenic amine theory of depression. Neurochem Int 4:339–350PubMedCrossRefGoogle Scholar
  84. Linn BS, Linn MW, Jensen J (1982) Degree of depression and immune responsiveness. Psychosom Med 44:128–129Google Scholar
  85. Loosen PT, Prange AJ (1980) Thyrotropin-releasing hormone (TRH): a useful tool for psychoneuroendocrine investigation. Psychoneuroendocrinology 5:63–80PubMedCrossRefGoogle Scholar
  86. Matussek N, Ackenheil M, Hippius HT, Müller F, Schröder H-T, Schultes H, Wasilewski B (1980) Effect of clonidine on growth hormone release in psychiatric patients and controls. Psychiatr Res 2:25–36CrossRefGoogle Scholar
  87. Matussek N, Ackenheil M, Herz M (1984) The dependence of the clonidine growth hormone test on alcohol drinking habits and the menstrual cycle. Psychoneuroendocrinology 9:173–177PubMedCrossRefGoogle Scholar
  88. Metalnikov S (1934) Rôle du système nerveux et des facteurs biologiques et psychiques dans l’immunité. Masson, ParisGoogle Scholar
  89. Montgomery SA (1982) The non-selective effect of selective antidepressants. Adv Biochem Psychopharmac 31:49–56Google Scholar
  90. Murphy DL, Donnelly C, Moskowitz J (1974) Catecholamine receptor function in depressed patients. Am J Psychiatry 131:1389–1391PubMedGoogle Scholar
  91. Nasr S, Daiguji M, Tang C, Meltzer HY (1980) Comparison of midday serum dopamine-ßhydroxylase activity in depressed patients and normal controls. Commun Psychopharmacol 4(4):263–267PubMedGoogle Scholar
  92. O’Neill B, Leonard BE (1986) Is there an abnormality in neutrophil phagocytosis in depression? IRCS Med Sci, 14:802–803Google Scholar
  93. Pandey GN, Pysken MW, Garter DL, Davis JM (1979) Beta-adrenergic receptor function in affective illness. Am J Psychiatry 136:675–678PubMedGoogle Scholar
  94. Paul SM, Rehavi M, Rice KC (1981) Does high affinity 3H-imipramine binding label serotonin re-uptake sites in brain and platelets? Life Sci 28:2753–2760PubMedCrossRefGoogle Scholar
  95. Pimoule C, Briley MS, Gay C, Loo H, Sechter D, Zarifian E, Raisman R, Langer SZ (1983) H-Rauwolscine binding in platelets from depressed patients and healthy volunteers. Psychopharmacology 79:398–402CrossRefGoogle Scholar
  96. Rehavi M, Skolnick P, Hulihan B, Paul SM (1981) High affinity binding of 3H-desipramine to rat cerebral cortex: relationship to tricyclic antidepressant induced inhibition of nor-adrenaline uptake. Eur J Pharmacol 70:597–603PubMedCrossRefGoogle Scholar
  97. Risch SC, Kahn NH, Murphy DL (1981) Pharmacological challenge strategies: implications for neurobehavioural mechanisms in affective disorders and treatment approaches. J Clin Pharmacol 1:238–245Google Scholar
  98. Rogers MP, Dubey D, Reich P (1979) The influence of the psyche and the brain on immunity and disease susceptibility: a critical review. Psychosom Med 41:147–164PubMedGoogle Scholar
  99. Sacchetti E, Maria E, Negri F, Biondi PA, Smeraldi E, Cazzullo CL (1979) Methoxy-4-hydroxyphenylglycol and primary depression: clinical and pharmacological considerations. Biol Psychiatry 14:473–484PubMedGoogle Scholar
  100. Schildkraut JJ, Orsulak PJ, Schatzberg AF (1978) Towards a biochemical classification of depressive disorders. 1. Differences in urinary excretion of MHPG and other catecholamine metabolites in clinically defined sub-types of depression. Arch Gen Psychiatr 35:1427–1433PubMedGoogle Scholar
  101. Scott M, Reading HW, Loudon TB (1979) Studies on human blood platelets in affective disorder. Psychopharmacology 60:131–135PubMedCrossRefGoogle Scholar
  102. Shaskin EG, Snyder SJ (1970) Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J Pharmacol Exp Therap 175:404–418Google Scholar
  103. Shimuzu T, Fujita M (1981) Effect of ß-adrenergic receptor blocking agents in depression as measured by plasma noradrenaline concentrations and blood pressure. In: Langer S (ed) New vistas in depression. Pergamon, New York, 126–134Google Scholar
  104. Stahl SM, Meltzer HY (1978) A kinetic and pharmacologic analysis of 5-hydroxytryptamine transport by human platelets and platelet storage granules. Comparison and central serotonergic neurons. J Pharmacol Exp Therap 205:118–121Google Scholar
  105. Stahl SM, Lenocine PM, Ciaranello RD (1983) Platelet alpha2 adrenergic receptor sensitivity in major depressive disorder. Psychiatr Res 10:157–164CrossRefGoogle Scholar
  106. Steer ML, Atlas D (1982) Demonstration of human platelet ß-adrenergic receptor using I125-labelled cyano pindolol and Ilabelled hydroxy benzyl pindolol. Biochem Biophys Acta 686:240–244PubMedCrossRefGoogle Scholar
  107. Todrick A, Tait AC (1969) The inhibition of human platelet 5-hydroxytryptamine uptake by tricyclic antidepressive drugs. The relation between structure and potency. J Pharm Pharmacol 21:751–762PubMedCrossRefGoogle Scholar
  108. Tuomisto T, Tukiainen E, Ahlfors UG (1979) Decreased uptake of 5-hydroxytryptamine in blood platelets from patients with endogenous depression. Psychopharmacology 65:141–147PubMedCrossRefGoogle Scholar
  109. Van Praag H, De Hahn S (1979) Central serotonin metabolism and frequency of depression. Psychiatry Res 1:219–224PubMedCrossRefGoogle Scholar
  110. Veith RC, Bielski RJ, Bloom V (1983) Urinary MHPG excretion and treatment with desipramine and amitriptyline. J Clin Psychopharmacol 3:18–27PubMedCrossRefGoogle Scholar
  111. Weiss JJ (1975) Platelet physiology and abnormalities of platelet function. N Engl J Med 293:531–541PubMedCrossRefGoogle Scholar
  112. Wirz-Justice A, Campbell IC (1982) Antidepressant drugs can slow or dissociate circadian rhythms. Experientia 38:1301–1309PubMedCrossRefGoogle Scholar
  113. Wirz-Justice A, Wehr TA (1983) Neuropsychopharmacology and biological rhythms. Adv Biol Psychiatry 11:20–34Google Scholar
  114. Wood K, Coppen A (1981) Platelet alpha-adrenoceptor sensitivity in depressive illness. Adv Biol Psychiatry 7:85–89Google Scholar
  115. Wood K, Coppen A (1985) Platelet transport and receptor sites in depressive illness. In: Iversen SD (ed) Psychopharmacology: recent advances and future prospects. Oxford University Press, Oxford, pp 21–32Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  1. 1.Psychiatrische Klinik und PoliklinikNervenklinik der Universität MünchenMünchen 2Germany

Personalised recommendations