Skip to main content

Birdsfoot Trefoil (Lotus corniculatus L.), Crownvetch (Coronilla varia L.) and Sainfoin (Onobrychis viciifolia Scop.)

  • Chapter
Crops II

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 6))

Abstract

Forage legumes are universally considered to have higher feeding value than non-legumes and this, for the most part, is true. One of the main reasons why they are superior is the fact that in general they contain a higher percentage of protein and minerals than non-legumes. As a matter of fact leaves and stems of forage legumes are higher particularly in protein than other plants when they are harvested at a similar stage of maturity. Legumes not only have a higher percentage of protein, they also have high quality protein. This is of prime importance and helps greatly in obtaining high nutritive value in feeds for animals (Wheeler 1950). The quality of the protein of legumes is such to make them especially valuable as feed to supplement cereal grains lacking the proper protein for a balanced livestock feed. Besides being of special value for feed, legumes are superior for soil improvement, due to the large amount of nitrogen they are able to supply to the soil for the use of subsequent crops. In the legumes, taking nitrogen from the air is accomplished through symbiotic bacteria (Rhizobia) that develop in nodules on the roots of the legumes. These bacteria take nitrogen direct from the air as they grow and multiply in the nodule. The nitrogen in turn becomes available to the legume plant and aids its nourishment and growth. It is this symbiotic association of legumes and Rhizobia that gives legumes a distinct advantage over non-legume plants. In this chapter, in vitro culture studies on three forage legumes, i.e. Lotus corniculatus, Coronilla varia and Onobrychis viciifolia are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja PS, Hadiuzzaman S, Davey MR, Cocking EC (1983a) Prolific plant regeneration from protoplast-derived tissues of Lotus corniculatus L. (Birdsfoot Trefoil). Plant Cell Rep 2:101–104

    Article  Google Scholar 

  • Ahuja PS, Lu DY, Cocking EC, Davey MR (1983b) An assessment of the cultural capabilities of Trifolium repens L. (white clover) and Onobrychis viciifolia Scop. (Sainfoin) mesophyll protoplasts. Plant Cell Rep 2:269–272

    Article  Google Scholar 

  • Anderson EJ (1959) Pollination of crownvetch. Glean Bee Cult 87:590–593

    Google Scholar 

  • Arcioni S, Mariotti D (1983) Tissue culture and plant regeneration in Onobrychis viciifolia Scop. Z Pflanzenzucht 90:192–197

    Google Scholar 

  • Arcioni S, Davey MR, Dos Santos AVP, Cocking EC (1982) Somatic embryogenesis in tissues from mesophyll and cell suspension protoplasts ofMedicago coerulea and M. glutinosa. Z Pflanzen- physiol 106:105–110

    CAS  Google Scholar 

  • Arcioni S, Mariotti D, Damiani F, Pezzotti M (1986) Somaclonal variation in Lotus corniculatus L. In: Horn W, Jensen CJ, Odenbach W, Schieder O: Genetic manipulation in plant breeding, pp. 581–584. Proc Int Symp Eucarpia, Berlin (West), Germany, Sept 1985, Walter de Gruyter, Berlin New York

    Google Scholar 

  • Auld DL, Ditterline RL, Mathre DE (1977) Screening sainfoin for resistance to root and crown rotcaused by Fusarium solani (Mart.). App Wr Crop Sei 17:69–73

    Google Scholar 

  • Bocsa I (1980) Amélioration du rendement en matière sèche chez la Luzerne. In: Bocsa I (ed) Proc Eucarpia Fodoler Crop Sec, GATE Agric Res Inst, Kompolt, Hungary, pp 19–28

    Google Scholar 

  • Cocking EC (1981) Opportunities from the use of protoplasts. Philos Trans R Soc London Ser B 292:557–568

    Article  CAS  Google Scholar 

  • D’Amato F (1977) Cytogenetics of differentiation in tissue and cell cultures. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer, Berlin Heidelberg New York, pp 343–357

    Google Scholar 

  • Damiani F, Mariotti D, Pezzotti M, Arcioni S (1985) Variation among plants regenerated from tissueculture of Lotus corniculatus L. Z Pflanzenzucht 94:332–339

    Google Scholar 

  • Davey MR (1983) Recent development in the culture and regeneration of plant protoplasts. In: Potrykus I, Harms CT, Hinnen A, Hütter R, King PJ, Shillito RD (eds) Protoplast 1983. 6th Int Protoplast Symp, Basel, August 1983. Birkhäuser, Basel Boston Stuttgart, pp 19–30

    Google Scholar 

  • Dos Santos AVP, Outka DE, Cocking EC, Davey MR (1980) Organogenesis and somatic embryogenesis in tissue derived from leaf protoplasts and leaf expiants of Medicago sativa. Z Pflanzenphysiol 99:261–270

    Google Scholar 

  • Duke JA (1981) Legumes species. In: Duke JA (ed) Handbook of legumes of world economic importance. Plenum, New York London, pp 125–129

    Google Scholar 

  • Frearson EM, Power JB, Cocking EC (1973) The isolation, culture and regeneration of Petunia leaf protoplasts. Dev Biol 33:130–137

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojina K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Grant WF, Sidhu BS (1967) Basic chromosome number, cyanogenetic glucoside variation, and geographic distribution of Lotus species. Can J Bot 47:639–647

    Article  Google Scholar 

  • Gresshoff PM (1980) In vitro culture of white clover: callus, suspension, protoplast culture and plant regeneration. Bot Gaz 141:157–164

    Article  Google Scholar 

  • Gresshoff PM, Doy CH (1972a) Haploid Arabidopsis thaliana callus and plants from anther culture. Austr J Biol Sei 25:259–269

    Google Scholar 

  • Gresshoff PM, Doy CH (1972b) Development and differentiation of haploidLycopersium esculen-tum. Planta 107:161–170

    Article  Google Scholar 

  • Gustine DL (1979) Aliphatic nitro-compounds in crownvetch: review. Crop Sei 19:197–203

    Article  Google Scholar 

  • Halperin W, Wetherell DF (1965) Ammonium requirement for embryogenesis in vitro. Nature (London) 205:519–520

    Article  Google Scholar 

  • Henson PR, Schoth HA (1962) The trefoils-adaptation and culture. USDA Agric Handb 223:1–16

    Google Scholar 

  • Kao KN (1977) Chromosomal behaviour in somatic hybrids of soybean Nicotiana glauca. Mol Gen Genet 150:225–230

    Article  Google Scholar 

  • Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid medium. Planta 126:105–110

    Article  CAS  Google Scholar 

  • Kao KN, Miehayluk MR (1980) Plant regeneration from mesophyll protoplasts of alfalfa. Z Pflanzenphysiol 96:135–141

    Google Scholar 

  • Kenson PR (1963) Crownvetch — A soil conserving legumes and a potential pasture and hay plant. USDA Agric Res Serv 34–53:1–9

    Google Scholar 

  • Keyes GJ, Bingham ET (1979) Heterosis and ploidy effects on the growth of alfalfa callus. Crop Sci 19:473–476

    Article  Google Scholar 

  • Keyes GJ, Collins GB, Taylor NL (1980) Genetic variation in tissue culture of red clover. Theor Appl Genet 58:265–271

    Article  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation — A novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Larkin PJ, Brettell R, Ryan S, Scowcroft W (1983) Protoplasts and variation from culture. In: Potrykus I, Harms CT, Hinnen A, Hutter R, King PJ, Shillito RD (eds) Protoplast 1983. 6th Int Protoplast Symp, Basel, August 1983, Birkhauser, Basel Boston Stuttgart, pp 51–56

    Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Mariotti D, Arcioni S (1983) Callus culture ofCoronilla varia L. (crownvetch): plant regeneration through somatic embryogenesis. Plant Cell Tissue Org Cult 2:103–110

    Article  Google Scholar 

  • Mariotti D, Pezzotti M, Falistocco E, Arcioni S (1984) Plant regeneration from leaf-derived callus of Lotus corniculatus cv. Franco. Genet Agric 38:219–223

    Google Scholar 

  • McCoy TJ, Bingham ET (1977) Regeneration of diploid alfalfa plants from cells grown in suspension culture. Plant Sci Lett 10:59–64

    Article  Google Scholar 

  • Miller CO (1963) Kinetin and kinetin-like compounds. In: Linskens HF, Tracey MV (eds) Moderne Methoden der Pflanzenanalyse, vol 6. Springer, Berlin Heidelberg New York, pp 192–202

    Google Scholar 

  • Moyer BG, Gustine DL (1984) Regeneration ofCoronilla varia L. (crownvetch) plants from callus culture. Plant Cell Tissue Org Cult 3:143–148

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niizeki M, Grant WF (1971) Callus, plantlet formation, and polyploidy from cultured anthers of Lotus and Nicotiana. Can J Bot 49:2041–2051

    Article  Google Scholar 

  • Orshinski BR, Tomes DT (1984) Comparison of plants derived from cuttings, node cultures, and ethyl methanesulfonate treated node cultures of birdsfoot trefoil (Lotus corniculatus). Can J Bot 62:1501–1504

    Article  Google Scholar 

  • Orshinski BR, Tomes DT (1985) Effect of long term culture and low temperature incubation on plant regeneration from a callus line of birdsfoot trefoil (Lotus corniculatus L.). J Plant Physiol 119:389–397

    Google Scholar 

  • Orshinsky BR, Swanson EB, Tomes DT (1983) Enhanced shoot regeneration from homogenized callus cultures of birdsfoot trefoil (Lotus corniculatus L.). Plant Cell Tissue Org Cult 2:341–347

    Article  Google Scholar 

  • Pezzotti M, Arcioni S, Damiani F, Mariotti D (1985) Time-related behaviour of phenotypic variation in Lotus corniculatus regenerants under field conditions. Euphytica 34:619–623

    Article  Google Scholar 

  • Phillips RL (1968) Cyanogenesis inLotus species. Crop Sci 8:123–124

    Article  Google Scholar 

  • Prat D (1983) Genetic variability induced in Nicotiana sylvestris by protoplast culture. Theor Appl Genet 64:223–230

    Article  Google Scholar 

  • Reisch B (1982) Variability among plants from Ethionine resistant alfalfa tissue cultures. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 415–416

    Google Scholar 

  • Sarno R (1981) Lupinella(Onobrychis viciifolia Scop.) (sin. O. sativa Lam.). In: Baldoni R, Giardini L (eds) Coltivazioni erbacee. Patron, Bologna, pp 891–893

    Google Scholar 

  • Saunders JW, Bingham ET (1972) Production of alfalfa plants from callus tissue. Crop Sci 12:804–807

    Article  Google Scholar 

  • Seaney RR (1964) Cross and self seed set in birdsfoot trefoil plants selected for self-fertility. Crop Sci 4:440–441

    Article  Google Scholar 

  • Seaney RR, Henson PR (1970) Birdsfoot trefoil. Adv Agron 22:119–157

    Article  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous cell cultures. Can J Bot 65:654–659

    Google Scholar 

  • Shepard JF, Bidney D, Shahin E (1980) Potato protoplasts in crop improvement. Science 208:17–24

    Article  PubMed  CAS  Google Scholar 

  • Swanson EB, Tomes DT (1980) Plant regeneration from cell cultures ofLotus corniculatus and the selection and characterization of 2,4-D tolerant cell lines. Can J Bot 58:1205–1209

    Article  CAS  Google Scholar 

  • Thomas E, Wernicke W (1978) Morphogenesis in herbaceous crop plants. In: Thorpe TA (ed) Frontiers of plant tissue culture. Proc 4th Int Congr Plant cell culture, Univ Calgary, pp 403–410

    Google Scholar 

  • Thomas E, King PJ, Potrykus I (1979) Improvement of crop plants via single cell in vitro. An assessment. Z Planzenzucht 82:1–30

    Google Scholar 

  • Thomas E, Bright WJ, Franklin J, Lancaster VA, Miflin BJ (1982) Variation amongst protoplast-derived potato plants (Solarium tuberosum cv. “Maris Bard”). Theor Appl Genet 62:65–68

    Google Scholar 

  • Tomes DT (1978) A tissue culture procedure for propagation and maintenance of Lotus corniculatus genotypes. Can J Bot 57:137–140

    Article  Google Scholar 

  • Uchimiya H, Murashige T (1974) Evaluation of parameters in the isolation of viable protoplasts from cultured tobacco cells. Plant Physiol 54:936–944

    Article  PubMed  CAS  Google Scholar 

  • Walker KA, Sato SG (1981) Morphogenesis in callus tissue ofMedicago sativa: the role of ammonium ions in somatic embryogenesis. Plant Cell Tissue Org Cult 1:109–121

    Article  CAS  Google Scholar 

  • Wernsman EA, Keim WF, Davis RL (1964) Meiotic behaviour in two Lotus species. Crop Sci 4:483–486

    Article  Google Scholar 

  • Wheeler WA (1950) Grasses and legumes as forage and pasture crops. In: Wheeler WA (ed) Forage and pasture crops. Van Nastrand, Princeton, NJ, pp 3–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arcioni, S., Mariotti, D., Damiani, F., Pezzotti, M. (1988). Birdsfoot Trefoil (Lotus corniculatus L.), Crownvetch (Coronilla varia L.) and Sainfoin (Onobrychis viciifolia Scop.). In: Bajaj, Y.P.S. (eds) Crops II. Biotechnology in Agriculture and Forestry, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73520-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73520-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73522-6

  • Online ISBN: 978-3-642-73520-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics