Crops II pp 530-547 | Cite as

Kale (Brassica oleracea L. var. acephala, medullosa, ramosa, sabellica)

  • J. Luštinec
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 6)

Abstract

Kale includes fodder plants of the species Brassica oleracea L., varieties acephala (collards, tree kale, borecole), medullosa Thellg. (marrow stem kale), sabellica L. (curly kale) and ramosa DC. (thousand-head kale). The first three varieties belong to the convariety acephala (DC.) Alef. sensu lat. (Helm 1963). Each variety is represented by a range of cultivars and there also exist many intervarietal forms.

Keywords

Sucrose Starch Nitrile Penta Inositol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj YPS (ed) (1986) Biotechnology in agriculture and forestry, vol 2. Crops I. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  2. Bajaj YPS, Nietsch P (1975) In vitro propagation of red cabbage (Brassica oleracea L. var. capitata). J Exp Bot 26:883–890CrossRefGoogle Scholar
  3. Barry TN, Manley TR, Redekopp C, Allsop TF (1985) Endocrine regulation of metabolism in sheep given kale (Brassica oleracea) and ryegrass(Lolium perenne)-clover (Trifolium repens) fresh-forage diets. Br J Nutrit 54:165–173CrossRefGoogle Scholar
  4. Benes K (1984) Histoehemical studies of in vitro aging of primary explants. Histochem J 16:341–344PubMedCrossRefGoogle Scholar
  5. Bidney DL, Shepard JF, Kaleikau E (1983) Regeneration of plants from mesophyll protoplasts of Brassica oleracea. Protoplasma 117:89–92CrossRefGoogle Scholar
  6. Bradshaw JE (1981) Effect of cultivar, sowing date and plant spacing on the yield and quality of fodder kale(Brassica oleracea). J Agric Sei 97:633–637Google Scholar
  7. Bradshaw JE (1984) Computer simulation of family selection schemes suitable for kale (Brassicaoleracea L.), involving half-sib, full-sib and selfed families. Theor Appl Genet 64:503–508Google Scholar
  8. Bradshaw JE, Borzucki R (1983) The effect of harvest date on the DOMD, crude protein, SMCO and SCN contents of the lamina, petiole and stem of fodder kale. J Sei Food Agric 34:227–232CrossRefGoogle Scholar
  9. Bradshaw JE, Chapman IM, Young A (1982) Genotype-environment interactions in fodder kale (Brassica oleracea L.) J Agric Sei 99:433–440CrossRefGoogle Scholar
  10. Bradshaw JE, Heaney RK, Smith WHM, Gowers S, Gemmell DJ, Fenwick GR (1984) The glucosinolate content of some fodder Brassicas. J Sei Food Agric 35:977–981CrossRefGoogle Scholar
  11. Chiang MS, Frechette S, Kuo CG, Chong C, Delafield SJ (1985) Embryogenesis and haploid plant production from anther culture of cabbage (Brassica oleracea var. capitata L.). Can J Plant Sei 65:1033–1037CrossRefGoogle Scholar
  12. Clare MV, Collin HA (1974) The production of plantlets from tissue cultures of Brussels sprout (Brassica oleracea L. var.gemmifera DC.). Ann Bot (London) 38:1067–1076Google Scholar
  13. Dietert MF, Barron SA, Yoder OC (1982) Effects of genotype on in vitro culture in the genusBrassica.Plant Sei Lett 26:233–240CrossRefGoogle Scholar
  14. Dunwell JM (1981) In vitro regeneration from excised leaf discs of three Brassica species. J Exp Bot 32:789–799CrossRefGoogle Scholar
  15. Dunwell JM, Thurling N (1985) Role of sucrose in microspore embryo production in Brassica napusssp. Oleifera 36:1478–1491Google Scholar
  16. Elmsheuser HA, Forche E, Neumann K-H (1978a) Investigations on the isolation of protoplasts of different Brassica species. Ber Dtsch Bot Ges 91:313–324Google Scholar
  17. Elmsheuser HA, Lein C, Neumann KH (1978b) Untersuchungen über Beziehungen zwischen Hormongehalt und Wachstumsleistung von Explantaten verschiedener Brassica-Arten in Gewebekultur. Z Pflanzenphysiol 88:25–31Google Scholar
  18. Elmsheuser HA, Neumann K-H, Schuster W (1978c) Untersuchungen zur Wirkung verschiedener Vitamine und einiger Wuchsstoffe auf das Wachstum und die Entwicklung von Gewebekulturen einiger Brassica-Arten. Angew Bot 52:193–201Google Scholar
  19. Eurostat (ed) (1984) Yearbook of agricultural statistics. Eurostat, BrusselsGoogle Scholar
  20. Fu YY, Jia SR, Lin Y (1985) Plant regeneration from mesophyll protoplast culture of cabbage (Brassica oleracea var. capitata). Theor Appl Genet 71:495–499CrossRefGoogle Scholar
  21. Fulkerson RS, Tossell WE (1972) An evaluation of marrow-stem kale. Can J Plant Sei 52:787–793CrossRefGoogle Scholar
  22. Gamborg OL, Miller RA, Ojima K (1986) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefGoogle Scholar
  23. Gatenby AA, Cocking EC (1977) Callus formation from protoplasts of marrow stem kale. Plant Sei Lett 8:275–280CrossRefGoogle Scholar
  24. Gieba YY, Hoffmann F (1980) “Arabidobrassica”: A novel plant obtained by protoplast fusion. Planta 149:112–117CrossRefGoogle Scholar
  25. Glimelius K (1984) High growth rate and regeneration capacity of hypocotyl protoplasts in some Brassicaceae. Physiol Plant 61:38–44CrossRefGoogle Scholar
  26. Helm J (1963) Morphologisch-taxonomische Gliederung der Kultursippen von Brassica oleracea L. Kulturpflanze XI:92–210CrossRefGoogle Scholar
  27. Horäk J (1972) Ploidy chimeras in plants regenerated from the tissue culture of Brassica oleracea L. Biol Plant 14:423–426CrossRefGoogle Scholar
  28. Horäk J, Landa Z, Lustinec J (1971) Production of polyploid plants from tissue cultures of Brassicaoleracea L. Fyton 28:7–10Google Scholar
  29. Horäk J, Lustinec J, Mesicek J, Kaminek M, Poläckovä D (1975) Regeneration of diploid and polyploid plants from the stem explants of diploid marrow stem kale(Brassica oleracea L.). Ann Bot (London) 39:571–577Google Scholar
  30. Johnston TD (1980) Forage brassica breeding at the Welsh Plant Breeding Station 1955–1980. Annu Rep Welsh Plant Breed Stn, pp 158–174Google Scholar
  31. Keller WA, Armstrong KC (1977) Embryogenesis and plant regeneration in Brassica napus anthercultures. Can J Bot 55:1383–1388CrossRefGoogle Scholar
  32. Keller WA, Armstrong KC (1978) High frequency production of microspore-derived plants from Brassica napus anther cultures. Z Pflanzenzücht 80:100–108Google Scholar
  33. Keller WA, Armstrong KC (1979) Stimulation of embryogenesis and haploid production in Brassica campestris anther cultures by elevated temperature treatments. Theor Appl Genet 55:65–67CrossRefGoogle Scholar
  34. Keller WA, Armstrong KC (1981) Production of anther-derived dihaploid plants in autotetraploid marrowstem kale (Brassica oleracea var. acephala). Can J Genet Cytol 23:259–265Google Scholar
  35. Kutik J, Benes K (1979) Structural aspects of the regulation of starch accumulation in stem pith ex-plants of kale. Biol Plant 21:351–354CrossRefGoogle Scholar
  36. Li L-C, Kohlenbach HW (1982) Somatic embryogenesis in quite a direct way in cultures of mesophyll protoplasts ofBrassica napus L. Plant Cell Rep 1:209–211CrossRefGoogle Scholar
  37. Lu DY, Pental D, Cocking EC (1982) Plant regeneration from seedling cotyledon protoplasts. Z Pflanzenphysiol 107:59–63Google Scholar
  38. Lustinec J, Horäk J (1970) Induced regeneration of plants in tissue cultures of Brassica oleracea. Experientia 26:919–920PubMedCrossRefGoogle Scholar
  39. Lustinec J (1988) Uptake and dose responses of auxin in vitro: Multiphasic concentration-dependencies. In: Bandurski RS, Kutäcek M, Krekule J (eds) Physiology and biochemistry of auxins in plants. SPB Academic Publishing, The Hague (in press)Google Scholar
  40. Lustinec J, Kaminek K, Privratsky J (1972) Increase in dry weight and protein content in Brassica oleracea and Nicotiana tabacum pith explants during short-term cultivation on simple media. Biol Plant 14:376–378CrossRefGoogle Scholar
  41. Lustinec J, Hadacovä V, Kaminek M (1974) The effect of various cytokinins and auxins on starch formation in kale and tobacco explants. In: Schreiber K, Schütte HR, Sembdner G (eds) Biochemistry and chemistry of plant growth regulators. Inst Biochem Pflanz, Halle/Saale, pp 311–313Google Scholar
  42. Lustinec J, Kaminek M, Benes K, Conrad K (1981 a) Hormone-like effect of vascular tissue on starch accumulation in stem explants of kale, Brassica oleracea. Physiol Plant 61:224–230Google Scholar
  43. Lustinec J, Kaminek M, Kramell H, Sembdner G (1984b) Hormone-like effects of vascular tissue on development of stem explants of kale. Biochem Physiol Pflanz 179:227–235Google Scholar
  44. Lustinec J, Conrad K, Kaminek M, Kramell H, Sembdner G (1985) Hormonal factors stimulating starch accumulation in stem explants of kale. Biol Plant 27:281–285CrossRefGoogle Scholar
  45. McDonald RC, Manley TR, Barry TN, Forss DA, Sinclair AG (1981) Nutritional evaluation of kale (.Brassica oleracea) diets: 3. Changes in plant composition induced by soil fertility practices, with special reference to S-methyl cysteine sulfoxide and glucosinolate concentrations. J Agric Sei 97:13–24CrossRefGoogle Scholar
  46. McNaughton IH, Ross CL (1978) Inter-specific and inter-generic hybridization in the Brassicaceae with special emphasis on the improvment of forage crops. Annu Rep Scott Plant Breed Stn, pp 75–110Google Scholar
  47. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  48. Nakanishi T, Hinata K (1973) An effective time for C02 gas treatment in overcoming self-incompatibility in Brassica. Plant Cell Physiol 14:873–879Google Scholar
  49. Nakanishi T, Hinata K (1975) Self-seed production by C02 gas treatment in self-incompatible cabbage. Euphytica 24:117–120CrossRefGoogle Scholar
  50. Nakanishi T, Esashi J, Hinata K (1969) Control of self-incompatibility by C02 gas in Brassica. Plant Cell Physiol 10:925–927Google Scholar
  51. Nissen P (1985) Dose responses of auxins. Physiol Plant 65:357–374CrossRefGoogle Scholar
  52. Ödland ML, Noll CJ (1950) The utilization of cross-compatibility and self-incompatibility in the production of Ft hybrid cabbage. Proc Am Soc Hortic Sei 55:391–402Google Scholar
  53. Pelletier G, Donefer E (1973) Nutritive value of fresh and dried marrow-stem kale harvested at two different periods. Can J Anim Sei 53:257–263CrossRefGoogle Scholar
  54. Schavinskaya SA (1937) Tetraploid cabbage obtained by means of regeneration. Bull Appl Bot Gen Plant Breed Ser II 7:13–36 (in Russian)Google Scholar
  55. Schenck HR (1981) Plant regeneration from protoplasts of Brassica oleracea. Cruciferae Newslett 6:23–24Google Scholar
  56. Schenck HR, Röbbelen G (1982) Somatic hybrids by fusion of protoplasts from Brassica oleracea and B. campestris. Z Pflanzenzücht 89:278–288Google Scholar
  57. Schistad I J, Nissen P (1984) Cytokinin-induced retention of chlorophyll in senescing barley leaves:Complexity of dose response. Physiol Plant 61:566–570CrossRefGoogle Scholar
  58. Smith RH (1980) Kale poisoning: The brassica anaemia factor. Yet Ree 107:12–15Google Scholar
  59. Sundberg E, Glimelius K (1986) A method for production of interspecific hybrids within Brassicaceae via somatic hybridization, using resynthesis ofBrassica napus as a model. Plant Sei 43:155–162CrossRefGoogle Scholar
  60. Taylor JP (1982) Carbon dioxide treatment as an effective aid to the production of selfed seed in kale and Brussels sprouts. Euphytica 31:957–964CrossRefGoogle Scholar
  61. Thompson KF (1964) Triple-cross hybrid kale. Euphytica 13:173–177Google Scholar
  62. Volger HG, Heber U (1975) Cryoprotective leaf proteins. Biochim Biophys Acta 412:335–349PubMedGoogle Scholar
  63. Walker JC, Larson RH, Taylor AC (1958) Diseases of cabbage and related plants. Agriculture handbook 114. USDA, Washington, DCGoogle Scholar
  64. Xu ZH, Davey MR, Cocking EC (1982) Plant regeneration from root protoplasts of Brassica. Plant Sei Lett 24:117–121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. Luštinec
    • 1
  1. 1.Institute of Experimental BotanyCzechoslovak Academy of SciencesPraha 6Czechoslovakia

Personalised recommendations