The Physical Basis of Magnetic Resonance Imaging

  • Gustav Konrad von Schulthess

Abstract

With the term “spin” we characterize a property of elementary particles such as protons and electrons which can be understood only within the theoretical framework of quantum mechanics. Thus, the NMR phenomenon is quantum mechanical in nature. Nevertheless, NMR can be understood using simple physical models from classical physics. We like to think of a spin as something like a compass needle, which will orient itself along an external magnetic field if it is placed in it. Being governed by the laws of quantum mechanics, spins can align not only parallel, but also antiparallel to an external field. Thus, a system of spins pointing in all spatial directions outside a magnetic field, will end up with some spins aligned parallel and some antiparallel to an external magnetic field, once such a field is applied (Fig. 1.1).
Fig. 1.1

The protons in a sample outside a magnetic field are oriented randomly. When an external magnetic field HO is applied, there are two possible orientations for the component along the external field: either parallel or antiparallel. There are slightly more spins pointing along the energetically more favorable direction

Keywords

Torque Ferrite Coherence Magnetite Macromolecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pake GE (1950) Fundamentals of nuclear magnetic resonance absorption, part 1. Am J Phys 18: 438–452CrossRefGoogle Scholar
  2. 2.
    Schiff LI (1968) Quantum mechanics ( 3rd edition ). McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Slichter CP (1963) Principles of magnetic resonance. Harper and RowGoogle Scholar
  4. 4.
    Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94: 630–635CrossRefGoogle Scholar
  5. 5.
    The Heisenberg uncertainty principle states that certain pairs of variables, such as the energy or frequency of the quantum mechanical state and the life time of the system in such a state, cannot be known more exactly than given by the relation AEAt h, where h is Planck’s constantGoogle Scholar
  6. 6.
    Mansfield P, Morris PG (1982) NMR imaging in biomedicine. Acadamic Press, New York 1982Google Scholar
  7. 7.
    Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99: 559–565CrossRefGoogle Scholar
  8. 8.
    Bloembergen N (1957) Proton relaxation times in paramagnetic solutions. J Chem Phys 27: 572–573CrossRefGoogle Scholar
  9. 9.
    Gadian DG, Payne JA, Bryant DJ, Young IR, Carr DH, Bydder GM (1985) Gadolinium-DTPA as a contrast agent in MR imaging - theoretical projections and practical observations. J Comp Ass Tomogr 9: 242–251CrossRefGoogle Scholar
  10. 10.
    Bertini I, Luchinat C (1986) NMR of paramagnetic molecules in biological systems. Benjamin/Cummings Publishing Co, Menlo Park, CaGoogle Scholar
  11. 11.
    Burton DR, Forsen S, Karlstrom G, Dwek RA, McLaughlin AC, Wain-Hobson S (1976) Difficulties in determining accurate molecular motion parameters from proton relaxation enhancement measurements as illustrated by the immunoglobulin G-Gd(III) system. Eur J Biochem 71: 519–528PubMedCrossRefGoogle Scholar
  12. 12.
    Grodd W, Brasch RC (1986) Magnetopharmazeutische Kontrastveränderungen in der Kernspintomographie. Fortschr Röntgenstr 145: 130–139CrossRefGoogle Scholar
  13. 13.
    Saini S, Stark DD, Hahn PF, Wittenberg J, Brady TJ, Ferrucci JT (1987) Ferrite particles: a superparamagnetic agent for the reticuloendothelial system. Radiology 162: 211–216PubMedGoogle Scholar
  14. 14.
    Widder DJ, Greif WL, Widder KJ, Edelman RR, Brady TJ (1987) Magnetite albumin microspheres: a new MR contrast material. Am J Roentgenol 148: 399–404Google Scholar
  15. 15.
    Bean CP, Livingston JD (1968) Superparamagnetism. J Appl Physiol 30: 1205–1298Google Scholar
  16. 16.
    Duewell S, Wüthrich R, Buck A, von Schulthess GK (1988) Signal loss in intravoxel incoherent motion: evaluation of different perfusion types and pulse sequences. SHRM book of abstracts 221Google Scholar
  17. 17.
    Beall PT, Amtey SR, Katsturi SR (1984) NMR data handbook for biochemical applications. Pergamon Press, New YorkGoogle Scholar
  18. 18.
    Hahn EL (1950) Spin echoes. Phys Rev 80: 580–585Google Scholar
  19. 19.
    Meiboom S, Gill D (1959) Modified spin echo methods for measuring nuclear relaxation times. Rev Sei Instr 29: 688–692CrossRefGoogle Scholar
  20. 20.
    Stejskal EE, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. Chem Phys 42: 288–293Google Scholar
  21. 21.
    von Schulthess GK, Higgins CB (1985) Blood flow imaging with MR: spin-phase phenomena. Radiology 157: 687–695Google Scholar
  22. 22.
    Waluch V, Bradley WG (1984) NMR even echo rephrasing in slow laminar flow. J Comput Ass Tomogr 8: 594–598CrossRefGoogle Scholar
  23. 23.
    Pattany PM, Phillips JC, Chiu LC, et al (1987) Motion artifact suppression technique ( MAST) for MR imaging. J Comput Ass Tomogr 11: 369–377Google Scholar
  24. 24.
    Singer JR (1978) NMR diffusion and flow measurements and an introduction to spin phase graphing. J Phys E Sei Instrum 11: 281–291CrossRefGoogle Scholar
  25. 25.
    Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153: 189–194PubMedGoogle Scholar
  26. 26.
    Brateman L (1986) Chemical shift imaging: a review. AJR 146: 971–980PubMedGoogle Scholar
  27. 27.
    Haase A, Mattaei D, Hänicke W, Merboldt KD (1986) Flash imaging: rapid NMR imaging using low flip-angle pulses. J Magnetic Resonance 67: 258–266Google Scholar
  28. 28.
    van der Meulen P, Groen JP, Cuppen JJ (1985) Very fast MR imaging by field echoes and small-angle excitation. Mag Res Imag 3: 297–299CrossRefGoogle Scholar
  29. 29.
    Young IR, Khenia S, Thomas DGT et al (1987) Clinical magnetic susceptibility mapping of the brain. J Comput Ass Tomogr 11: 2–6CrossRefGoogle Scholar
  30. 30.
    Nayler GL, Firmin DN, Longmore DB (1986) Blood flow imaging by cine magnetic resonance. J Comput Ass Tomogr 10: 715–722CrossRefGoogle Scholar
  31. 31.
    Wehrli FW, Shimakawa A, Gullberg GT, MacFall JR (1986) Time-off-flight MR flow imaging: selective saturation recovery with gradient refocussing. Radiology 160: 781–785PubMedGoogle Scholar
  32. 32.
    Lauterbur PC (1973) Image formation by induced local interactions: examples employing NMR. Nature 242: 190–196CrossRefGoogle Scholar
  33. 33.
    Kumar A, Welti D, Ernst RR (1975) NMR Fourier zeugmatography. J Mag Resonance 18: 63 - 89Google Scholar
  34. 34.
    Edelstein WA, Hutchinson JMS, Johnson G et al (1980) Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol 25: 751–756PubMedCrossRefGoogle Scholar
  35. 35.
    Hounsfield GN (1973) Computerised transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46: 1016–1022PubMedCrossRefGoogle Scholar
  36. 36.
    Gordon R, Herman GT, Johnson SA (1975) Image reconstruction from projections. Scientific American 233: 56–68PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Gustav Konrad von Schulthess
    • 1
  1. 1.Departement Medizinische RadiologieUniversitätsspital ZürichZürichSwitzerland

Personalised recommendations