Inelastic Energy Loss

  • Wolfgang Eckstein
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 10)

Abstract

Atoms moving in a solid lose energy due to interaction with electrons. This phenomenon, referred to as electronic or inelastic energy loss, can be due to excitation or ionization in both of the colliding atoms, leading to a change in kinematics, which may be handled as discussed in Chap. 2. Since this form of energy loss happens in the electronic shells of atoms, it is called localized or local energy loss. The other possibility, referred to as continuous (or sometimes as non-local) energy loss, is due to the electron gas in a solid (metal); energy is spread continuously along the trajectory of an atom in the solid.

Keywords

Nickel Argon Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    H.A. Bethe: Ann. Phys. (Leipzig) 5, 325 (1930)ADSGoogle Scholar
  2. 5.2
    F. Bloch: Ann. Phys. (Leipzig) 16, 285 (1933)ADSMATHGoogle Scholar
  3. 5.3
    B.A. Trubnikov, Yu.N. Yavlinskii: Zh. Eksp. Teor. Fiz. 48, 253 (1965) [Sov. Phys.-JETP 21, 167 (1965)]Google Scholar
  4. 5.4
    J. Hubbard: Proc. R. Soc. London 243, 336 (1958)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.5
    J. Lindhard, A. Winter: Mat.-Fys. Med. K. Dan. Vidensk. Selsk. 34 /4, 1 (1964)Google Scholar
  6. 5.6
    I. Nagy, J. Läszlö, J. Giber: Z. Phys. A321, 221 (1985)ADSGoogle Scholar
  7. 5.7
    J. Lindhard: Mat.-Fys. Med. K. Dan. Vidensk. Selsk. 28 /8, 1 (1954)MathSciNetGoogle Scholar
  8. 5.8
    R. Wedell: Nucl. Instrum. Methods 12, 17 (1985)CrossRefGoogle Scholar
  9. 5.9
    J. C.Ashley, R.H. Ritchie, W. Brandt: Phys. Rev. A8, 2402 (1973)ADSGoogle Scholar
  10. 5.10
    I. Nagy, J. Läszlö, J. Giber: Nucl. Instrum. Methods 15, 8 (1986)CrossRefGoogle Scholar
  11. 5.11
    I. Nagy, J. Läszlö, J. Giber: Appl. Phys. A31, 153 (1983)Google Scholar
  12. 5.12
    T.L. Ferrel, R.H. Ritchie: Phys. Rev. B16, 115 (1977)ADSCrossRefGoogle Scholar
  13. 5.13
    P. Sigmund: Phys. Rev. A26, 2497 (1982)ADSGoogle Scholar
  14. 5.14
    MJ. Puska, R.M. Nieminen: Phys. Rev. B27, 6121 (1983)ADSCrossRefGoogle Scholar
  15. 5.15
    P.M. Echenique, R.M. Nieminen, R.H. Ritchie: Solid. State Commun. 37, 779 (1981)ADSCrossRefGoogle Scholar
  16. 5.16
    H.H. Andersen, J.F. Ziegler: In Hydrogen Stopping Powers and Ranges in All Elements, The Stopping and Range of Ions in Matter, Vol. 3, ed. by J.F. Ziegler ( Pergamon, New York 1977 ) p. 35Google Scholar
  17. 5.17
    J.F. Ziegler: In Helium Stopping Powers and Ranges in All Elements, The Stopping and Range of Ions in Matter, Vol.4, ed. by J.F. Ziegler ( Pergamon, New York 1977 )Google Scholar
  18. 5.18
    J.F. Janni: In Calculations of Energy Loss, Range, Pathlength, Straggling, Multiple Scattering, and the Probability of inelastic Nuclear Collisions for 0.1 to 1000 MeV Protons, Tech. Rpt. No. AFWL-TR–65–150 ( Air Force Weapons Laboratory, Kirtland A.F.B. 1966 )Google Scholar
  19. 5.19
    E.C. Montenegro, S.A. Cruz, C. Vargas-Aburto: Phys. Let. 92A, 195 (1982)ADSCrossRefGoogle Scholar
  20. 5.20
    O.B. Firsov: Zh. Eksp. Teor. Fiz. 36, 1517 (1959) [Sov. Phys.-JETP 36, 1076 (1959)Google Scholar
  21. 5.21
    W. Brandt: Nucl. Instrum. Methods 194, 13 (1982)ADSCrossRefGoogle Scholar
  22. 5.22
    H. Kitagawa: Nucl. Instrum. Methods B2, 123 (1984)CrossRefGoogle Scholar
  23. 5.23
    L.C. Northcliffe, R.F. Schilling: Nuclear Data Tables A7, 233 (1970)ADSCrossRefGoogle Scholar
  24. 5.24
    P. Gombäs: “Statistische Behandlung des Atoms” In Encyclopedia of Physics, ed. by S. Flügge, Vol.36: Atoms II ( Springer, Berlin 1956 ) p. 109Google Scholar
  25. 5.25
    M.T. Robinson, I.M. Torrens: Phys. Rev. B9, 5008 (1974)ADSCrossRefGoogle Scholar
  26. 5.26
    O.S. Oen, M.T. Robinson: Nucl. Instrum. Methods 132, 647 (1976)CrossRefGoogle Scholar
  27. 5.27
    M.T. Robinson: Private communication (1988)Google Scholar
  28. 5.28
    J. Lindhard, M. Scharff: Phys. Rev. 124, 128 (1961)ADSCrossRefGoogle Scholar
  29. 5.29
    J. Lindhard, M. Scharff, H.E. Schiott: Mat.-Fys. Med. K. Dan. Vidensk. Selsk. 33, 14 (1963)Google Scholar
  30. 5.30
    E. Fermi, E. Teller: Phys. Rev. 72, 399 (1947)ADSCrossRefGoogle Scholar
  31. 5.31
    D. Fink, JP. Biersack, M. Städele, K. Tjan, V.K. Cheng: Nucl. Instrum. Methods 218, 171 (1983)CrossRefGoogle Scholar
  32. 5.32
    D. Fink, J.P. Biersack, M. Städele, K. Tjan, V.K. Cheng: Nucl. Instrum. Methods 218, 817 (1983)CrossRefGoogle Scholar
  33. 5.33
    H.A. Bethe: Z. Phys. 76, 293 (1932)ADSMATHCrossRefGoogle Scholar
  34. 5.34
    F. Bloch: Z. Phys. 81, 363 (1933)ADSMATHCrossRefGoogle Scholar
  35. 5.35
    J.D. Jackson, R.L. McCarthy: Phys. Rev. B6, 4131 (1972)ADSCrossRefGoogle Scholar
  36. 5.36
    C. Varelas, J.P. Biersack: Nucl. Instrum. Methods 79, 213 (1970)ADSCrossRefGoogle Scholar
  37. 5.37
    J.F. Ziegler, J.P. Biersack, U. Littmark: In The Stopping and Range of Ions in Solids, The Stopping and Range of Ions in Matter, Vol. 1, ed. by J.F. Ziegler ( Pergamon, New York 1985 )Google Scholar
  38. 5.38
    W. Brandt: In Atomic Collisions in Solids, Vol. 1, ed. by S. Datz, B.R. Appleton, C.D. Moak ( Plenum, New York 1975 ) p. 261Google Scholar
  39. 5.39
    W.H. Bragg, R. Kleeman: Philos. Mag. 10, 318 (1905)Google Scholar
  40. 5.40
    D. Boutard, W. Möller, B.M.U. Scherzer: Phys. Rev. B38, 2988 (1988)ADSCrossRefGoogle Scholar
  41. 5.41
    J.R. Sabin, J. Oddershede: Nucl. Instrum. Methods B27, 280 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Wolfgang Eckstein
    • 1
  1. 1.Max-Planck-Institut für PlasmaphysikGarchingFed. Rep. of Germany

Personalised recommendations