Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 10))

  • 582 Accesses

Abstract

In contrast to the binary collision model, the Classical Dynamics (CD) model studies the movement of atoms in a solid as a function of time. The term CD is here preferred in contrast to the most often applied term Molecular Dynamics (MD), because the problems addressed in this book deal nearly exclusively with atoms not molecules. The CD model takes the interaction with all neighbouring atoms into account. It can therefore be called a Multiple Interaction (MI) logic [3.1]. All moving atoms are followed in small time steps so that collisions between moving atoms are automatically included. A good overview of the CD model is given by Abraham [3.2], the basic physics is discussed by Hoover [3.3], and much practical advice is given in Beeler’s book [3.4] as well as in the more recent book by Allen and Tildesley [3.5]. Constraints such as constant stress [3.6], constant pressure [3.7] and constant temperature [3.8] lead to additional terms in the equations of motion and therefore ensembles other than the microcanonical. Even more choices are possible [3.9] but they are mainly used in the simulation of liquids, phase transformations and the like.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.E. Harrison, Jr.: Crit. Rev. Solid. State Sci. 14, SI (1988)

    Google Scholar 

  2. F.F. Abraham: Adv. Phys. 35, 1 (1986)

    Article  ADS  Google Scholar 

  3. W.G. Hoover: Molecular Dynamics, Lecture Notes in Physics, Vol. 258 ( Springer, Berlin, Heidelberg 1986 )

    Google Scholar 

  4. J.R. Beeler: Radiation Effects -Computer Experiments Series: Defects in Crystalline Solids, Vol. 13, ed. by S. Amelinckx, R. Gevers, J. Nihoul ( North-Holland, Amsterdam 1983 )

    Google Scholar 

  5. M.P. Allen, DJ. Tildesley: Computer Simulation of Liquids ( Clarendon, Oxford 1987 )

    MATH  Google Scholar 

  6. M. Parinello, A. Rahman: Phys. Rev. Lett. 45, 1196 (1980)

    Article  ADS  Google Scholar 

  7. H.C. Andersen: J. Chem. Phys. 72, 2384 (1980)

    Article  ADS  Google Scholar 

  8. S. Nosé: J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  9. D.Frenkel: In Simple Molecular Systems at Very High Density, by A. Polian, P. Loubeyre, N. Boccara ( Plenum, New York 1989 ) p. 411

    Google Scholar 

  10. J.O. Schiffgens, K.E. Garrison: J. Appi. Phys. 43, 3240 (1972)

    Article  ADS  Google Scholar 

  11. M. Bom: Proc. Cambridge Philos. Soc. 36, 160 (1940)

    Google Scholar 

  12. B. Carnahan, H.A. Luther, J.O. Wilkes: Applied Numerical Methods (Wiley, New York 1969) Chap. 6

    Google Scholar 

  13. C.W. Gear: Numerical Initial Value Problems in Ordinary Differential Equations ( Prentice Hall, Englewood Cliffs, NJ 1971 )

    MATH  Google Scholar 

  14. L.F. Shampine, M.K. Gordon: Computer Solution of Ordinary Differential Equations: The Initial Value Problem (W.H. Freeman, San Francisco 1975 )

    Google Scholar 

  15. J.B. Gibson, A.N. Goland, M. Milgram, G.H. Vineyard: Phys. Rev. 120, 1229 (1960)

    Article  ADS  Google Scholar 

  16. D.E. Harrison, Jr., W.L. Gay, H.M. Effron: J. Math. Phys. 10, 1179 (1969)

    Article  ADS  MATH  Google Scholar 

  17. L. Verlet: Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

  18. R.W. Hockney, J.W. Eastwood: Computer Simulation using Particles ( McGraw-Hill, New York 1981 )

    Google Scholar 

  19. HJ.C. Berendsen, W.F. van Gunsteren: In Molecular Dynamics Simulations of Statistical Mechanical Systems, Proc. of the 97th Intl. School of Physics ‘Enrico Fermi’, ed. by G. Ciccotti, W.G. Hoover ( North-Holland, Amsterdam 1985 ) p. 43

    Google Scholar 

  20. D. Beeman: J. Comput. Phys. 20, 130 (1976)

    Article  ADS  Google Scholar 

  21. A. Nordsieck: Math. Comput. 16, 22 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J.R. Beeler: In Interatomic Potentials and Simulation of Lattice Defects, ed. by P.C. Gehlen, J.R. Beeler, Jr., R.I. Jaffee ( Plenum, New York 1972 ) p. 735

    Google Scholar 

  23. P. Schofield: Comput. Phys. Commun. 5, 17 (1973)

    Article  ADS  Google Scholar 

  24. D. Fincham: Comput. Phys. Commun. 40, 263 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eckstein, W. (1991). Classical Dynamics Model. In: Computer Simulation of Ion-Solid Interactions. Springer Series in Materials Science, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73513-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73513-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73515-8

  • Online ISBN: 978-3-642-73513-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics