The Binary Collision Model

  • Wolfgang Eckstein
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 10)


The binary collision approximation is the basis of a large number of computer simulation programs. These programs treat the movement of an atom in a solid as a series of successive binary collisions. The single binary collision will be the subject of this chapter. The terms atom, particle or projectile may be used independently of the charge state of an atom. Binary collisions between atoms have been studied in the past in the field of atomic collisions in the gas phase and, for example, in the game of billiards, but there are several details that cannot be found in textbooks such as [2.1,2].


Impact Parameter Target Atom Scattering Angle Binary Collision Screen Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    H. Goldstein: Classical Mechanics, 2nd ed. ( Addison-Wesley, Reading, Mass. 1980 ) Chap. 3MATHGoogle Scholar
  2. 2.2
    L.D. Landau, E.M. Lifshitz: Mechanics, Vol.1 of Course of Theoretical Physics, 2nd ed. ( Pergamon, Oxford 1969 ) Chap. I VGoogle Scholar
  3. 2.3
    W. Eckstein, R. Bastasz: Nucl Instrum. Methods 29, 603 (1988)CrossRefGoogle Scholar
  4. 2.4
    M. Gryzinski: Phys. Rev. 138, A305 (1965)MathSciNetADSCrossRefGoogle Scholar
  5. 2.5
    R.K.B. Helbing: J. Chem. Phys. 48, 472 (1968)ADSCrossRefGoogle Scholar
  6. 2.6
    G. Leibfried: Bestrahlungseffekte in Festkörpern ( Teubner, Stuttgart 1965 )MATHGoogle Scholar
  7. 2.7
    C. Lehmann: Interaction of Radiation with Solids and Elementary Defect Production ( North-Holland, Amsterdam 1965 )Google Scholar
  8. 2.8
    M.T. Robinson, I.M. Torrens: Phys. Rev. B 9, 5008 (1974)ADSCrossRefGoogle Scholar
  9. 2.9
    M.T. Robinson: “Tables of Classical Scattering Integrals”; U.S. Atomic Energy Commission, ORNL–4556 (1970)Google Scholar
  10. 2.10
    Z. Kopal: Numerical Analysis (Chapman and Hall, London 1961) pp. 367 ffGoogle Scholar
  11. 2.11
    PJ. Davis, I. Polansky: In Handbook of Mathematical Functions, ed. by M. Abramowitz, I.A. Stegun (Dover, New York 1965) Chap. 25, p. 887Google Scholar
  12. 2.12
    K. Mehler: J. Reine Angew. Math. 63, 152 (1864)MATHCrossRefGoogle Scholar
  13. 2.13
    PJ. Davis, I. Polansky: In Handbook of Mathematical Functions, ed. by M. Abramowitz, I.A. Stegun (Dover, New York 1965) Chap. 25, p. 889Google Scholar
  14. 2.14
    FJ. Smith: Physica 30, 497 (1964)MathSciNetADSCrossRefGoogle Scholar
  15. 2.15
    M. Abramovitz: In Handbook of Mathematical Functions, ed. by M. Abramowitz, I.A. Stegun (Dover, New York 1965) Chap. 3, p. 18Google Scholar
  16. 2.16
    J.P. Biersack, L.G. Haggmark: Nucl. Instrum. Methods 174, 257 (1980)ADSCrossRefGoogle Scholar
  17. 2.17
    O.B. Firsov: Zh. Eksp. Teor. Fiz. 33, 696 (1957) [Sov. Phys.-JETP 6, 534 (1958)]Google Scholar
  18. 2.18
    J.P. Biersack, W. Krüger, R.L. Stuller: Radiat. Eff. Lett. 85, 193 (1985)CrossRefGoogle Scholar
  19. 2.19
    J. Sielanko: Radiat. Eff. Lett. 86, 185 (1984)CrossRefGoogle Scholar
  20. 2.20
    W. Krüger: Radiat. Eff. Lett. 87, 51 (1985)CrossRefGoogle Scholar
  21. 2.21
    V.M. Konoplev: Radiat. Eff. Lett. 87, 207 (1986)CrossRefGoogle Scholar
  22. 2.22
    H.G. Schlager, W. Eckstein: IPP-Report 9 /69, (1989)Google Scholar
  23. 2.23
    M.T. Robinson: In Sputtering by Particle Bombardment /, ed. by R. Behrisch, Topics Appl. Phys., Vol. 47 ( Springer, Berlin, Heidelberg 1981 ) p. 73Google Scholar
  24. 2.24
    W.L. Gay, D.E. Harrison, Jr.: Phys. Rev. 135, A1780 (1964)ADSCrossRefGoogle Scholar
  25. 2.25
    V.E. Yurasova: In Physics of Ionized Gases, ed. by V. Vujnovic ( Institute of Phys., University of Zagreb, Yugoslavia 1974 ) p. 427Google Scholar
  26. 2.26
    C. Erginsoy, G.H. Vineyard, A. Shimizu: Phys. Rev. 139, A118 (1965)ADSCrossRefGoogle Scholar
  27. 2.27
    D.M. Schwartz, J.O. Schiffgens, D.G. Doran, G.R. Odette, R.G. Ariyasu: In Computer Simu-lation for Materials Applications, ed. by R J. Arsenault, J.R. Beeler, Jr., J.A.Simmons (NBS, Washington, DC 1976) p. 75. See also Nucl. Metall. 20, 75 (1976)Google Scholar
  28. 2.28
    H.L. Heinisch, J.O. Schiffgens, D.M. Schwartz: J. Nucl. Mater. 85 /86, 607 (1979)ADSCrossRefGoogle Scholar
  29. 2.29
    J.O. Schiffgens, K.E. Garrison: J. Appi. Phys. 43, 3240 (1972)ADSCrossRefGoogle Scholar
  30. 2.30
    M.M. Jakas, D.E. Harrison, Jr.: Nucl. Instrum. Methods B 14, 535 (1986)ADSCrossRefGoogle Scholar
  31. 2.31
    D.E. Harrison, Jr., M.M. Jakas: Radiat. Eff. 99, 153 (1986)CrossRefGoogle Scholar
  32. 2.32
    J.P. Biersack, W. Eckstein: Appi. Phys. A 34, 73 (1984)ADSCrossRefGoogle Scholar
  33. 2.33
    N. Bohr: Mat.-Phys. K. Dan. Vidensk. Selsk. 18, No. 8 (1948)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Wolfgang Eckstein
    • 1
  1. 1.Max-Planck-Institut für PlasmaphysikGarchingFed. Rep. of Germany

Personalised recommendations