Dense Packings of Hard Spheres

  • J. Villain
  • K. Y. Szeto
  • B. Minchau
  • W. Renz
Part of the Springer Proceedings in Physics book series (SPPHY, volume 27)

Abstract

In this contribution we investigate some properties of densely packed hard spheres. In the first section we define what we call hard spheres and what we call densely packed (the packing should be locally dense, in contrast to a fee lattice for instance). In the second section the case of identical spheres is recalled. The next three sections are devoted to mixtures of two different species. The two-dimensional theory is given in Section 3, and applied to quasi—crystals in Section 4. The three-dimensional case is treated in Section 5.

Keywords

Hexagonal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    M. Eden, 4th Berkeley Symp. on Math. Stat, and Probability IV (1961) 233, F. Neyman, ed. (Berkeley: University)Google Scholar
  2. /2/.
    L.M. Sander in “Scaling Phenomena in Disordered Systems” ed. R. Pynn and A. Skjeltorp (Plenum, New York, 1985) p. 31 and references therein. M. Kolb, R. Jullien, R. Botet, ibid, p. 71Google Scholar
  3. /3/.
    J. Weeks in “Ordering in strongly fluctuating condensed matter systems” ed. T. Riste (Plenum, New York, 1980) p. 293 and refs. thereinGoogle Scholar
  4. /4/.
    F. Lançon, L. Billard, P. Chaudhari, Europhysics Letter 2, 625, (1986)ADSCrossRefGoogle Scholar
  5. /5/.
    M. Widom, K.J. Strandberg and R.H. Swendson, Phys. Rev. Lett. 58, 706 (1987)ADSCrossRefGoogle Scholar
  6. /6/.
    B. Minchau, K.Y. Szeto, J. Villain, Phys. Rev. Lett. 58, 1960 1960ADSCrossRefGoogle Scholar
  7. /7/.
    D. Levin, P.J. Steinhardt, Phys. Rev. B 34, 596 (1986)ADSCrossRefGoogle Scholar
  8. /8/.
    C.L. Henley, submitted to Comments in Cond. Matt. Phys. (1987)Google Scholar
  9. /9/.
    R. Penrose, Math. Intell. 2, 32 (1979)MathSciNetMATHCrossRefGoogle Scholar
  10. /10/.
    M. Audier and P. Guyot. Private communication and Phil. Mag. Lett. 53, L 43 (1986)Google Scholar
  11. /11/.
    K.Y. Szeto, J. Villain, Phys. Rev. B 36, 4715 (1987)MathSciNetADSCrossRefGoogle Scholar
  12. /12/.
    J.D. Bernai and J. Mason, Nature 188, 910 (1960)ADSCrossRefGoogle Scholar
  13. /13/.
    M.R. Hoare, J. Non-cryst. Sol. 31, 157 (1978)ADSCrossRefGoogle Scholar
  14. /14/.
    M. Rubinstein, D.R. Nelson, Phys. Rev. B 26, 6254 (1982)MathSciNetADSCrossRefGoogle Scholar
  15. /15/.
    R. Mosseri, J.F. Sadoc, J. Physique Lett. 45, L 827 (1984)CrossRefGoogle Scholar
  16. /16/.
    F. Lançon, L. Billard, A. Chamberod, J. Phys. F. 14, 579 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. Villain
    • 1
  • K. Y. Szeto
    • 1
  • B. Minchau
    • 1
  • W. Renz
    • 1
  1. 1.Institut für Festkörperforschung der Kernforschungsanlage JülichJülichFed. Rep. of Germany

Personalised recommendations