Skip to main content

Stimulus-Secretion Coupling in the Pancreatic B Cell

  • Conference paper
Book cover Stimulus-Secretion Coupling in Neuroendocrine Systems

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 9))

Abstract

The maintenance of fuel homeostasis is critically dependent on a constant and constantly adjusted supply of insulin from the endocrine pancreas. An output of insulin adequate to meet extrapancreatic insulin requirements is ensured by a series of nutritional, hormonal, neural, and ontogenic factors, which all participate in the control of insulin secretion (Malaisse 1972). Most of these factors have, in either an immediate or delayed fashion, direct effects upon pancreatic B cells located in the islets of Langerhans. B cells must both be equipped with a series of suitable sensor systems in order to identify each regulatory factor, and be suitably organized to integrate the information provided by each sensor system, in order eventually to respond with an adequate rate of hormonal release. This situation can be visualized as a multifactorial control of a single release process (Malaisse 1973). Among the factors conceivably involved in the immediate regulation of insulin release under physiological conditions, four major types can be identified. They are circulating nutrients, cholinergic neurotransmitters, adrenergic agents, and peptidergic hormones. The present contribution deals mainly with the mechanisms for the insulinotropic action of these four types of factors. A brief description of the overall functional organization of the B cell will, however, be presented first.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahren B, Taborsky GJ Jr, Porte D Jr (1986) Neuropeptidergic versus cholinergic and adrenergic regulation of islet hormone secretion. Diabetologia 29: 827–836.

    PubMed  CAS  Google Scholar 

  • Ashcroft FM, Harrison DE, Ashcroft SJH (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic B-cells. Nature 312: 446–448.

    PubMed  CAS  Google Scholar 

  • Best L (1986) A role for calcium in the breakdown of inositol phospholipids in intact and digitonin-permeabilized pancreatic islets. Biochem J 238: 773–779.

    PubMed  CAS  Google Scholar 

  • Best L, Malaisse WJ (1983a) Effects of nutrient secretagogues upon phospholipid metabolism in rat pancreatic islets. Mol Cell Endocrinol 32: 205–214.

    PubMed  CAS  Google Scholar 

  • Best L, Malaisse WJ (1983b) Stimulation of phosphoinositide breakdown in rat pancreatic islets by glucose and carbamylcholine. Biochem Biophys Res Commun 116: 9–16.

    PubMed  CAS  Google Scholar 

  • Best L, Malaisse WJ (1983c) Phosphatidylinositol and phosphatidic acid metabolism in rat pancreatic islets in response to neurotransmitter and hormonal stimuli. Biochem Biophys Acta 750: 157–163.

    PubMed  CAS  Google Scholar 

  • Best L, Malaisse WJ (1983d) Phospholipids and islet function. Diabetologia 25: 299–305.

    PubMed  CAS  Google Scholar 

  • Best L, Malaisse WJ (1984a) Nutrient and hormone-neurotransmitter stimuli induce hydrolysis of polyphosphoinositides in rat pancreatic islets. Endocrinology 115: 1814–1820.

    PubMed  CAS  Google Scholar 

  • Best L, Malaisse WJ (1984b) Enhanced de novo synthesis of phosphatidic acid and phosphatidyl inositol in rat pancreatic islets exposed to nutrient and neurotransmitter stimuli. Arch Biochem Biophys 234: 253–257.

    PubMed  CAS  Google Scholar 

  • Blachier F, Malaisse WJ (1987a) Phospholipase C activation via a GTP binding protein in tumoral islet cells stimulated by carbamylcholine. Experienta 43: 601–602.

    CAS  Google Scholar 

  • Blachier F, Malaisse WJ (1987b) Possible role of a GTP-binding protein in the activation of phospholipase C by carbamylcholine in tumoral insulin-producing cells. Res Commun Chem Pathol Pharmacol 58: 237–255.

    PubMed  CAS  Google Scholar 

  • Blachier F, Segura MC, Malaisse WJ (1987a) Unresponsiveness of phospholipase C to the regulatory proteins Ns and Ni in pancreatic islets. Res Commun Chem Pathol Pharmacol 55: 335–355.

    PubMed  CAS  Google Scholar 

  • Blachier F, Sener A, Malaisse WJ (1987b) Interference of a nonmetabolized analog of L-leucine with lipid metabolism in tumoral pancreatic islet cells. Biochim Biophys Acta 921: 494–501.

    PubMed  CAS  Google Scholar 

  • Brisson GR, Malaisse WJ (1973) The stimulus-secretion coupling of glucose-induced insulin release. XL Effects of theophylline and epinephrine on 45Ca efflux from perifused islets. Timetabolism 22: 455–465.

    CAS  Google Scholar 

  • Brisson GR, Malaisse-Lagae F, Malaisse WJ (1971) Effect of phentolamine upon insulin secretion during exercise. Diabetologia 7: 223–226.

    PubMed  CAS  Google Scholar 

  • Brisson GR, Malaisse-Lagae F, Malaisse WJ (1972) The stimulus-secretion coupling of glucose-induced insulin release. VIL A proposed site of action of adenosine-3′,5′-cyclic monophosphate. J Clin Invest 51: 232–241.

    PubMed  CAS  Google Scholar 

  • Capito K, Hedeskov CJ (1977) Effects of glucose, glucose metabolites and calcium ions on adenylate cyclase activity in homogenates of mouse pancreatic islets. Tibiochem J 162: 569–573.

    CAS  Google Scholar 

  • Chan SJ, Nanjo K, Miyano M, Lu Y-S, Welsh M, Nielsen D, Haneda M, Kwok SCM, Tager HS, Rubenstein AH, Steiner DF (1986) Abnormalities of insulin gene structure and expression. A minireview. In: Serrano-Rios M, Lefèbvre PJ (eds) Diabetes 1985. Excerpta Medica, Amsterdam, pp 486–494.

    Google Scholar 

  • Cherksey B, Mendelsohn S, Zadunaisky J, Altzuler N (1982) Demonstration of α2-adren-ergic receptors in rat pancreatic islets using radioligand binding. Proc Soc Exp Biol Med 171: 196–200.

    PubMed  CAS  Google Scholar 

  • Cherksey B, Mendelsohn S, Zadunaisky J, Altzuler N (1983) Displacement of alpha-and beta-radioligands by specific adrenergic agonists in rat pancreatic islets. Pharmacology 27: 95–102.

    PubMed  CAS  Google Scholar 

  • Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Tinature 311: 271–273.

    CAS  Google Scholar 

  • Deleers M, Ruysschaert JM, Malaisse WJ (1981) Glucose induces membrane changes detected by fluorescence polarization in endocrine pancreatic cells. Biochem Biophys Commun 98: 255–260.

    CAS  Google Scholar 

  • Deleers M, Lebrun P, Malaisse WJ (1985a) Nutrient-induced changes in the pH of pancreatic islet cells. Horm Metab Res 17: 391–395.

    PubMed  CAS  Google Scholar 

  • Deleers M, Mahy M, Malaisse WJ (1985b) Glucose increases cytosolic Ca2+ activity in pancreatic islet cells. Biochem Int 10: 97–103.

    PubMed  CAS  Google Scholar 

  • Dunlop ME, Malaisse WJ (1986) Phosphoinositide phosphorylation and hydrolysis in pancreatic islet cell membrane. Tiarch Biochem Biophys 244: 421–429.

    CAS  Google Scholar 

  • Dunne MJ, Petersen OH (1986) Intracellular ADP activates K+ channels that are inhibited by ATP in an insulin-secreting cell line. tiFEBS Lett 208: 59–62.

    CAS  Google Scholar 

  • Gagerman E, Idahl L-A, Meissner HP, Täljedal I-B (1978) Insulin release, cGMP, cAMP and membrane potential in acetylcholine-stimulated islets. Am J Physiol 235: E493–E500.

    PubMed  CAS  Google Scholar 

  • Gagerman E, Sehlin J, Täljedal I-B (1980) Effects of acetylcholine on ion fluxes and chlorotetracycline fluorescence in pancreatic islets. J Physiol (Lond) 300: 505–513.

    CAS  Google Scholar 

  • Garcia-Morales P, Dufrane SP, Sener A, Valverde I, Malaisse WJ (1984) Inhibitory effect of clonidine upon adenylate cyclase activity, cyclic AMP production and insulin release in rat pancreatic islets. Biosci Rep 4: 511–521.

    PubMed  CAS  Google Scholar 

  • Giroix M-H, Sener A, Pipeleers DG, Malaisse WJ (1984) Hexose metabolism in pancreatic islets. Inhibition of hexokinase. Biochem J 223: 447–453.

    PubMed  CAS  Google Scholar 

  • Gold G, Grodsky GM (1984) Kinetic aspects of compartmental storage and secretion of insulin and zinc. Tiexperientia 40: 1105–1114.

    CAS  Google Scholar 

  • Goldfme ID, Roth J, Birnbaumer L (1972) Glucagon receptors in ß-cells. Binding of 125I-glucagon and activation of adenylate cyclase. J Biol Chem 247: 1211–1218.

    Google Scholar 

  • Gomis R, Arbos MA, Sener A, Malaisse WJ (1986) Glucose-induced activation of trans-glutaminase in pancreatic islets. Diabetes Res 3: 115–117.

    PubMed  CAS  Google Scholar 

  • Gorus FK, Malaisse WJ, Pipeleers DG (1984) Differences in glucose handling by pancreatic A-and B-cells. J Biol Chem 259: 1196–1200.

    PubMed  CAS  Google Scholar 

  • Grill V, Östenson CG (1983) Muscarinic receptors in pancreatic islets of the rat: demonstration and dependence on long term glucose environment. Biochim Biophys Acta 756: 159–162.

    PubMed  CAS  Google Scholar 

  • Harrison DE, Ashcroft SJH, Christie MR, Lord JM (1984) Protein phosphorylation in the pancreatic B-cell. Experientia 40: 1075–1084.

    PubMed  CAS  Google Scholar 

  • Hellman B (1986) External ATP initiates receptor-mediated mobilisation of calcium from pancreatic islets. Diabetologia 29: 548A.

    Google Scholar 

  • Henquin JC, Meissner HP (1983) Dibutyryl cyclic AMP triggers Ca2+ infux and Ca2+-dependent electrical activity in pancreatic B-cells. Tibiochem Biophys Res Commun 112: 614–620.

    CAS  Google Scholar 

  • Hubinont CJ, Malaisse WJ (1985) Protein kinase C in pancreatic islets: effects of Ca2+, calmodulin and retinoic acid. Tibiochem Int 10: 557–584.

    Google Scholar 

  • Hubinont C, Best L, Sener A, Malaisse WJ (1984) Activation of protein kinase C by a tumor-promoting phorbol ester in pancreatic islets. FEBS Lett 170: 247–253.

    PubMed  CAS  Google Scholar 

  • Lapetina EG (1982) Regulation of arachidonic acid production: role of phospholipases C and A2. Titrends Pharmacol Sci 3: 115–118.

    CAS  Google Scholar 

  • Leclercq-Meyer V, Herchuelz A, Valverde I, Couturier E, Marchand J, Malaisse WJ (1980) Mode of action of clonidine upon islet function. Diabetes 29: 193–200.

    PubMed  CAS  Google Scholar 

  • Leclercq-Meyer V, Woussen-Colle MC, Lalieu C, Marchand J, Malaisse WJ (1987) Anomeric specificity of glucose-induced somatostatin secretion. Experientia 43: 1216–1218.

    PubMed  CAS  Google Scholar 

  • Lindström P, Sehlin J (1986) Effect of intracellular alkalinization on pancreatic islet calcium uptake and insulin secretion. Biochem J 239: 199–204.

    PubMed  Google Scholar 

  • Loubatières-Mariani MM, Chapal J, Alrich R, Loubatières A (1973) Studies of the cholin-ergic receptors involved in the secretion of insulin using isolated perfused rat pancreas. Diabetologia 9: 439–446.

    PubMed  Google Scholar 

  • Malaisse WJ (1972) Hormonal and environmental modification of islet activity. In: Steiner DF, Freinkel N (eds) Endocrine pancreas. American Physiological Society, Washington, pp 237–260 (Handbook of physiology, sect. 7, vol 1).

    Google Scholar 

  • Malaisse WJ (1973) Insulin secretion: multifactorial regulation for a single process of release. Diabetologia 9: 163–167.

    Google Scholar 

  • Malaisse WJ (1983) Insulin release: the fuel concept. Diabete Metab 9: 313–320.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Malaisse-Lagae F (1969) Influences nutritionnelles et hormonales chroniques sur la fonction insulaire. In: Journées de diabétologie de l’Hôtel-Dieu 1969. Flammarion, Paris, pp 131–138.

    Google Scholar 

  • Malaisse WJ, Malaisse-Lagae F (1984) The role of cyclic AMP in insulin release. Experientia 40: 1068–1075.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Moratinos J (1986) Are pancreatic B-cells equipped with α1-adrenoceptors? IRCS Med Sci 14: 1194–1195.

    CAS  Google Scholar 

  • Malaisse WJ, Orci L (1979) The role of the cytoskeleton in pancreatic B-cell function. In: Gabbiani G (ed) Methods of achievements in experimental pathology, vol 9. Karger, Basel, pp 112–136.

    Google Scholar 

  • Malaisse WJ, Sener A (1985) Inhibition by l-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) of protein kinase C activity and insulin release in pancreatic islets. tiIRCS Med Sci 13: 1239–1240.

    CAS  Google Scholar 

  • Malaisse WJ, Sener A (1986) Opposite effects of adrenergic and cholinergic agents in pancreatic islets. Tiexp Clin Endocrinol (Life Sci Adv) 5: 43–49.

    Google Scholar 

  • Malaisse WJ, Sener A (1987a) Glucose-induced changes in cytosolic ATP content in pancreatic islets. Biochem Biophys Acta 927: 190–195.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Sener A (1987b) (to be published) The redox potential. In: Akkerman JWN (ed) The energetics of secretion responses. CRC Press, Boca Raton.

    Google Scholar 

  • Malaisse WJ, Malaisse-Lagae F, Mayhew DA (1967a) A possible role for the adenyl cyclase system in insulin secretion. J Clin Invest 46: 1724–1734.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Malaisse-Lagae F, Wright PH, Ashmore J (1967b) Effects of adrenergic and cholinergic agents upon insulin secretion in vitro. Endocrinology 80: 975–978.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Brisson G, Malaisse-Lagae F (1970) The stimulus-secretion coupling of glucose-induced insulin release. I. Interaction of epinephrine and alkaline earth cations. J Lab Clin Med 76: 895–902.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Pipeleers DG, Van Obberghen E, Somers G, Devis G, Marichal M, Malaisse-Lagae F (1973) The glucoreceptor mechanism in the pancreatic beta-cell. Am Zool 13: 605–612.

    CAS  Google Scholar 

  • Malaisse WJ, Malaisse-Lagae F, Van Obberghen E, Somers G, Devis G, Ravazzola M, Orci L (1975) Role of microtubules in the phasic pattern of insulin release. Ann NY Acad Sci 253: 630–652.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Sener A, Levy J (1976a) The stimulus-secretion coupling of glucose-induced insulin release. XXI. Fasting-induced adaptation of key glycolytic enzymes in isolated islets. J Biol Chem 251: 1731–1737.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Sener A, Koser M, Herchuelz A (1976b) The stimulus-secretion coupling of glucose-induced insulin release. XXIV. The metabolism of α-and ß-D-glucose in isolated islets. J Biol Chem 251: 5936–5943.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Sener A, Koser M, Ravazzola M, Malaisse-Lagae F (1977) The stimulus-secretion coupling of glucose-induced insulin release. XXV. Insulin release due to glycogenolysis in glucose-deprived islets. Biochem J 164: 447–454.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Sener A, Herchuelz A, Hutton JC (1979) Insulin release: the fuel hypothesis. Metabolism 28: 373–386.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Sener A, Herchuelz A, Carpinelli AR, Poloczek P, Winand J, Castagna M (1980) Insulinotropic effect of the tumor promotor 12-O-tetradecanoylphorbol-12-ace-tate in rat pancreatic islets. Cancer Res 40: 3827–3831.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Sener A, Malaisse-Lagae F (1981) Insulin release: reconciliation of the receptor and metabolic hypotheses. Nutrient receptors in islet cells. Mol Cell Biochem 37: 157–165.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Malaisse-Lagae F, Sener A (1983a) Anomeric specificity of hexose metabolism in pancreatic islets. Physiol Rev 63: 773–786.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Lebrun P, Herchuelz A, Sener A, Malaisse-Lagae F (1983b) Synergistic effect of a tumor-promoting phorbol ester and a hypoglycémie sulfonylurea upon insulin release. Endocrinology 113: 1870–1873.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Malaisse-Lagae F, Sener A (1984a) Coupling factors in nutrient-induced insulin release. Experientia 40: 1035–1043.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Svoboda M, Dufrane SP, Malaisse-Lagae F, Christophe J (1984b) Effect of Bordetella pertussis toxin on ADP-ribosylation of membrane proteins, adenylate cyclase activity and insulin release in rat pancreatic islets. Biochem Biophys Res Commun 124: 190–196.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Garcia-Morales P, Dufrane SP, Sener A, Valverde I (1984c) Forskolin-induced activation of adenylate cyclase, cyclic adenosine monophosphate production and insulin release in rat pancreatic islets. Endocrinology 115: 2015–2020.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Scholler Y, De Maertelaer V (1985a) Mathematical modelling of stimulus-secretion coupling in the pancreatic B-cell. IV. Dissociated time course for the glucose-induced changes in distinct Ca2+ movements. Diabetes Res 2: 195–199.

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Mahy M, Mathias PCF (1985b) Binding of [3H]methylscopolamine to rat pancreatic islets. IRCS Med Sci 13: 503–504.

    CAS  Google Scholar 

  • Malaisse WJ, Dunlop ME, Mathias PCF, Malaisse-Lagae F, Sener A (1985c) Stimulation of protein kinase C and insulin release by 1-oleyl-2-acetyl-glycerol. Eur J Biochem 149: 23–27.

    PubMed  CAS  Google Scholar 

  • Mathias PCF, Best L, Malaisse WJ (1985a) Stimulation by glucose and carbamylcholine of phospholipase C in pancreatic islets. Cell Biochem Funct 3:173–177.

    PubMed  CAS  Google Scholar 

  • Mathias PCF, Best L, Malaisse WJ (1985b) Stimulation by glucose and carbamylcholine of phospholipase A2 in pancreatic islets. Diabetes Res 2: 267–270.

    PubMed  CAS  Google Scholar 

  • Mathias PCF, Carpinelli AR, Billaudel B, Garcia-Morales P, Valverde I, Malaisse WJ (1985c) Cholinergic stimulation of ion fluxes in pancreatic islets. Biochem Pharmacol 34: 3451–3457.

    PubMed  CAS  Google Scholar 

  • Matschinsky FM, Ellerman J, Stillings S, Raybaud F, Pace C, Zawalich W (1975) Hexoses and insulin secretion. In: Hasselblatt A, Bruchhausen Fv (eds) Insulin, part 2. Springer, Berlin Heidelberg New York, pp 79–114.

    Google Scholar 

  • Moody AJ, Markussen J, Schaich Fries A, Steenstrup C, Sundby F, Malaisse WJ, Malaisse-Lagae F (1970) The insulin releasing activities of extracts of pork intestine. Diabetologia 6: 135–140.

    PubMed  CAS  Google Scholar 

  • Nenquin M, Awouters P, Mathot F, Henquin JC (1984) Distinct effects of acetylcholine and glucose on 45calcium and 86rubidium efflux from mouse pancreatic islets. FEBS Lett 176: 457–461.

    PubMed  CAS  Google Scholar 

  • Orci L, Malaisse WJ (1980) Hypothesis: single and chain release of insulin secretory granules is related to anionic transport at exocytotic sites. Tidiabetes 29: 943–944.

    CAS  Google Scholar 

  • Orci L, Malaisse-Lagae F, Ravazzola M, Amherdt M, Renold AE (1973) Exocytosis-endo-cytosis coupling in the pancreatic beta cell. Science 181: 561–562.

    PubMed  CAS  Google Scholar 

  • Orci L, Malaisse-Lagae F, Ravazzola M, Rouiller D, Renold AE, Perrelet A, Unger RH (1975) A morphological basis for intercellular communication between α-and ß-cells in the endocrine pancreas. J Clin Invest 56: 1066–1070.

    PubMed  CAS  Google Scholar 

  • Östenson CG, Grill V (1985) Glucose exerts opposite effects on muscarinic receptor binding to A and B cells of the endocrine pancreas. Endocrinology 116: 1741–1744.

    PubMed  Google Scholar 

  • Owen A, Malaisse WJ (1987) Mathematical modelling of stimulus-secretion coupling in the pancreatic B-cell. V. Threshold phenomenon for the response to cyclic AMP. Tidiabete Metab 13: 514–519.

    CAS  Google Scholar 

  • Patel YC, Amherdt M, Orci L (1982) Quantitative electron microscopic autoradiography of insulin, glucagon and somatostatin binding sites on islets. Science 217: 1155–1156.

    PubMed  CAS  Google Scholar 

  • Pipeleers DG (1984) Islet cell interactions with pancreatic B-cells. Experientia 40: 1114–1126.

    PubMed  CAS  Google Scholar 

  • Pipeleers DG, Levy J, Malaisse-Lagae F, Malaisse WJ (1975) In vitro biosynthesis and release of three immunoreactive insulin-like components by a human insulinoma. Diabete Metab 1: 7–11.

    CAS  Google Scholar 

  • Pipeleers DG, Pipeleers-Marichal MA, Kipnis DM (1976) Microtubule assembly and the intracellular transport of secretory granules in pancreatic islets. Science 191: 88–90.

    PubMed  CAS  Google Scholar 

  • Prentki M, Biden TJ, Janjic D, Irvin RF, Berridge MJ, Wollheim CB (1984) Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-l, 4, 5-trisphosphate. Nature 309: 562–564.

    PubMed  CAS  Google Scholar 

  • Rasmussen H, Kojima I, Zawalich W (1984) The calcium messenger system in endocrine systems. Abstracts 7th international congress of endocrinology. Excerpta Medica, Amsterdam, p 157.

    Google Scholar 

  • Rodbell M (1985) Programmable messengers: a new theory of hormone action. Trends Biochem Sci 10: 461–464.

    CAS  Google Scholar 

  • Rorsman P, Trube G (1985) Glucose dependent K+-channels in pancreatic B-cells are regulated by intracellular ATP. Tipflugers Arch 405: 305–309.

    CAS  Google Scholar 

  • Schuit FC (1987) Functional characterization of purified pancreatic B-cells. Regulatory role of cyclic AMP. Thesis, Vrije Universiteit Brussel, Brussels.

    Google Scholar 

  • Sener A, Malaisse WJ (1980) L-leucine and a non-metabolized analogue activate pancreatic islet glutamate dehydrogenase. Tinature 288: 187–189.

    CAS  Google Scholar 

  • Sener A, Malaisse WJ (1987) The coupling of metabolic to secretory events in pancreatic islets: comparison between insulin release and cytosolic redox state. Tibiochem Int 14: 897–902.

    CAS  Google Scholar 

  • Sener A, Malaisse-Lagae F, Malaisse WJ (1981) Stimulation of islet metabolism and insulin release by a non-metabolizable amino acid. Proc Natl Acad Sci USA 78: 5460–5464.

    PubMed  CAS  Google Scholar 

  • Sener A, Malaisse-Lagae F, Lebrun P, Herchuelz A, Leclercq-Meyer V, Malaisse WJ (1982) Anomeric specificity of D-mannose metabolism in pancreatic islets. Biochem Biophys Res Commun 108: 1567–1573.

    PubMed  CAS  Google Scholar 

  • Sener A, Leclercq-Meyer V, Giroix M-H, Malaisse WJ, Hellerström C (1987) Opposite effects of D-glucose and a nonmetabolized analogue of L-leucine on respiration and secretion in insulin-producing tumoral cells (RINm5F) Diabetes 36: 187–192.

    PubMed  CAS  Google Scholar 

  • Somers G, Blondel B, Orci L, Malaisse WJ (1979) Motile events in pancreatic endocrine cells. Endocrinology 104: 255–264.

    PubMed  CAS  Google Scholar 

  • Somers G, Sener A, Devis G, Malaisse WJ (1980) The stimulus-secretion coupling of glucose-induced insulin release. XLV. The anion-osmotic hypothesis for exocytosis. Pflugers Arch 388: 249–253.

    PubMed  CAS  Google Scholar 

  • Sugden MC, Ashcroft SJH (1978) Effects of phosphoenol-pyruvate, other glycolytic intermediates and methylxanthines on calcium uptake by a mitochondrial fraction from rat pancreatic islets. Tidiabetologia 15: 173–180.

    CAS  Google Scholar 

  • Svoboda M, Garcia-Morales P, Dufrane SP, Sener A, Valverde I, Christophe J, Malaisse WJ (1985) Stimulation by cholera toxin of ADP-ribosylation of membrane proteins, adenylate cyclase and insulin release in pancreatic islets. Cell Biochem Funct 3: 25–32.

    PubMed  CAS  Google Scholar 

  • Tamagawa T, Niki H, Niki A (1985) Insulin release independent of a rise in cytosolic free Ca2+ by forskolin and phorbol ester. FEBS Lett 183: 430–432.

    PubMed  CAS  Google Scholar 

  • Trus MD, Hintz CS, Weinstein JB, Williams AD, Pagliara AS, Matschinsky FM (1978) Effects of glucose and acetyl choline on islet tissue NADH and insulin release. Life Sci 22: 809–816.

    PubMed  CAS  Google Scholar 

  • Valverde I, Malaisse WJ (1984) Calmodulin and pancreatic B-cell function. Tiexperientia 40: 1061–1068.

    CAS  Google Scholar 

  • Valverde I, Vandemeers A, Anjaneyulu R, Malaisse WJ (1979) Calmodulin activation of adenylate cyclase in pancreatic islets. Science 206: 225–227.

    PubMed  CAS  Google Scholar 

  • Valverde I, Garcia-Morales P, Ghiglione M, Malaisse WJ (1983) The stimulus-secretion coupling of glucose-induced insulin release. LII. Calcium dependency of the cyclic AMP response to nutrient secretagogue. Horm Metab Res 15: 62–68.

    PubMed  CAS  Google Scholar 

  • Wollheim CB, Siegel EG, Sharp GWG (1980) Dependency of acetylcholine-induced insulin release on Ca2+ uptake by rat pancreatic islets. Endocrinology 107: 924–929.

    PubMed  CAS  Google Scholar 

  • Wollheim CB, Ullrich S, Pozzan T (1984) Glyceraldehyde, but not cyclic AMP-stimulated insulin release is preceded by a rise in cytosolic free Ca2+. FEBS Lett 177: 17–22.

    PubMed  CAS  Google Scholar 

  • Zawalich W, Brown C, Rasmussen H (1983) Insulin secretion: combined effects of phorbol ester and A23187. Biochem Biophys Res Commun 117: 448–455

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malaisse, W.J. (1988). Stimulus-Secretion Coupling in the Pancreatic B Cell. In: Ganten, D., Pfaff, D., Pickering, B. (eds) Stimulus-Secretion Coupling in Neuroendocrine Systems. Current Topics in Neuroendocrinology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73495-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73495-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73497-7

  • Online ISBN: 978-3-642-73495-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics