Skip to main content

Changes in Information Content with Physiological History in Peptidergic Secretory Systems

  • Conference paper
Book cover Stimulus-Secretion Coupling in Neuroendocrine Systems

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 9))

Abstract

This review seeks to focus attention on the potential complexity of the information conveyed by the release of chemicals during the synaptic or secretory activity of neurons. The importance of peptides in the control of neural function is underscored by the growing research in four different areas: (a) co-localization of peptides with classical neurotransmitters (Lundberg and Hökfelt 1983; Lloyd et al. 1987); (b) demonstration of peptidergic neurons in all parts of the central nervous systems of vertebrate and invertebrate species by immunohistochemical and biochemical approaches (e.g., Swanson and Sawchenko 1983; Siwicki et al. 1987; Kaldany et al. 1985); (c) cases of classical neurosecretory cells (e.g., those of the vertebrate hypothalamus, Swanson and Kuypers 1980) which do not have their processes restricted to neurohemal organs (e.g., the neurohypophysis), but participate in widespread interactions within the central nervous system; and (d) a spectrum of activities ranging from neurotransmitter to neurohormonal processes and their involvement in complex behaviors (Koob and Bloom 1982). Further, in all known instances, those neurons known to secrete peptides as either the major or a co-localized product never secrete a single peptide, but rather a mixture of peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burford GD, Pickering BT (1973) Intra-axonal transport and turnover of neurophysins in the rat. Tibiochem J 136: 1047–1052.

    CAS  Google Scholar 

  • Burford GD, Clifford CW, Jones CW, Pickering BT (1973) A model for the passage of the neurohypophyseal hormones and their related proteins through the rat neurohypophysis. Biochem J 136: 1053–1058.

    PubMed  CAS  Google Scholar 

  • Carson ER, Cobelli C, Finkelstein L (1983) The mathematical modeling of metabolic and endocrine systems. Wiley, New York.

    Google Scholar 

  • Chang ES, Bruce MJ, Newcomb RW (1987) Purification and amino acid composition of a peptide with molt-inhibiting activity from the lobster, Homarus americanus. Gen Comp Endocrinol 65: 56–64.

    Article  PubMed  CAS  Google Scholar 

  • Chapman DB, Morris JF, Valtin H (1982) How do granules distribute between nerve endings and nerve swellings in the neural lobe? Evidence from Brattleboro rats. In: Baertschi AJ, Dreifuss JJ (eds) Neuroendocrinology of vasopressin, corticotropin and opiomelanocortins. Academic, London, pp 1–10.

    Google Scholar 

  • Cooke IM (1977) Electrical activity of neurosecretory terminals and control of peptide hormone release. In: Farner DS, Lederis K (eds) Peptides in neurobiology. Plenum, New York.

    Google Scholar 

  • Cooke IM (1985) Electrophysiological characterization of peptidergic neurosecretory terminals. J Exp Biol 118: 1–35.

    PubMed  CAS  Google Scholar 

  • Douglass J, Civelli O, Herbert E (1984) Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Annu Rev Biochem 53: 665–715.

    Article  PubMed  CAS  Google Scholar 

  • Draznin B, Sherman N, Sussman K, Dahl R, Vatter A (1985) Internalization and cellular processing of somatostatin in primary culture of rat anterior pituitary cells. Endocrinology 117: 960–965.

    Article  PubMed  CAS  Google Scholar 

  • Elliot ME, Goodfriend MD (1986) Atrial natriuretic peptide inhibits protein phosphorylation stimulated by angiotensin II in bovine adrenal glomerulosa cells. Tibiochem Biophys Res Commun 140: 814–820.

    Article  Google Scholar 

  • Fleminger G, Lahm H, Udenfriend S (1984) Changes in rat adrenal catecholamines and proenkephalin metabolism after denervation. Proc Natl Acad Sci USA 81: 3587–3590.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey K (1983) Compartmental models and their applications. Academic, London.

    Google Scholar 

  • Heap PF, Jones CW, Morris JF, Pickering BT (1975) Movement of neurosecretory product through the anatomical compartments of the neural lobe of the pituitary gland. Cell Tiss Res 156: 483–497.

    Article  CAS  Google Scholar 

  • Helsop JP, Blakeley DM, Brown KD, Irvine RF, Berridge MJ (1986) Effects of bombesin and insulin on inositol (l,4,5)triphosphate and inositol (l, 3, 4)triphosphate formation in Swiss 3T3 cells. Cell 47: 703–709.

    Article  Google Scholar 

  • Ivell R, Richter D (1984) Structure and comparison of the oxytocin and vasopressin genes from the rat. tiProc Natl Acad Sci USA 81: 2006–2010.

    Article  CAS  Google Scholar 

  • Johnson RG Jr (ed) (1987) Cellular and molecular biology of hormone-and neurotransmitter-containing secretory vesicles. Ann NY Acad Sci 493: 590.

    Google Scholar 

  • Jones CW, Pickering BT (1969) Comparison of effects of water deprivation and sodium chloride imbibition on the hormone content of the neurohypophysis of the rat. Tij Physiol (Lond) 203: 449–458.

    CAS  Google Scholar 

  • Kaldany R-R, Campanelli JT, Schaefer M, Shyamala M, Scheller RH (1985) Low molecular weight proteins of Aplysia neurosecretory cells. Peptides 6: 445–449.

    Article  PubMed  CAS  Google Scholar 

  • Keller R, Wunderer G (1978) Purification and amino acid composition of the neurosecretory hyperglycemie hormone from the sinus gland of the shore crab, Carcinus maenus. Gen Comp Endocrinol 34: 328–335.

    Article  PubMed  CAS  Google Scholar 

  • Koob G, Bloom F (1982) Behavioral effects of neuropeptides: endorphin and vasopressin. Tiannu Rev Physiol 44: 571–582.

    Article  CAS  Google Scholar 

  • Lemos JR, Nordmann JJ, Cooke IM, Stuenkel EL (1986) Single channels and ionic currents in peptidergic nerve terminals. Nature 319: 410–412.

    Article  PubMed  CAS  Google Scholar 

  • Lewis RV, Stern AS (1983) Biosynthesis of the enkephalins and enkephalin-containing polypeptides. Tiannu Rev Pharmacol Toxicol 23: 353–372.

    Article  CAS  Google Scholar 

  • Lloyd PE, Frankfurt M, Stevens P, Kupferman I, Weiss KR (1987) Biochemical and immunocytological localization of the neuropeptides FMRFamide, SCPA, SCPB, to neurons involved in the regulation of feeding in Aplysia. J Neurosci 7: 1123–1132.

    PubMed  CAS  Google Scholar 

  • Loh YP, Brownstein MJ, Gainer H (1984) Proteolysis in neuropeptide processing and other neural functions. Annu Rev Neurosci 7: 189–222.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg JM, Hökfelt T (1983) Coexistence of peptides and classical neurotransmitters. Trends Neurosci 6: 325–333.

    Article  CAS  Google Scholar 

  • Lynch DR, Snyder S (1986) Neuropeptides: multiple molecular forms, metabolic pathways, and receptors. Tiannu Rev Biochem 55: 773–799.

    Article  CAS  Google Scholar 

  • Mains RE, Eipper BA (1981) Differences in the post-translational processing of ß-endorphin in rat anterior and intermediate pituitary. Tij Biol Chem 256: 5683–5688.

    CAS  Google Scholar 

  • Mains R, Eipper B, Ling N (1977) Common precursor to corticotropins and endorphins. Proc Natl Acad Sci USA 74: 3014–3018.

    Article  PubMed  CAS  Google Scholar 

  • Majzoub JA, Rich A, Boom J, Habener JF (1983) Vasopressin and oxytocin mRNA regulation in the rat assessed by hybridization with synthetic oligonucleotides. J Biol Chem 258: 14061–14064.

    PubMed  CAS  Google Scholar 

  • McKelvy JF, Blumberg S (1986) Inactivation and metabolism of neuropeptides. Tiannu Rev Neurosci 9: 415–434.

    Article  CAS  Google Scholar 

  • Milington WR, O’Donohue TL, Chappell MC, Roberts JL, Mueller GP (1986) Coordinate regulation of peptide acetyltransferase activity and pro-opiomelanocortin gene expression in the intermediate lobe of the rat pituitary. Endocrinology 118: 2024–2033.

    Article  Google Scholar 

  • Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF (1986) Preproglucagon gene expression in pancreas and intestine diversities at the level of post-translational processing. J Biol Chem 261: 11880–11889.

    PubMed  CAS  Google Scholar 

  • Murthy KK, Thibault G, Garcia R, Gutkowska J, Genest J, Cantin M (1986) Degradation of atrial natriuretic factor in the rat. Biochem J 240: 461–469.

    PubMed  CAS  Google Scholar 

  • Nagano M, Cooke IM (1987) Comparison of electrical responses of terminals, axons, and somata of a peptidergic neurosecretory system. Tij Neurosci 7: 634–648.

    CAS  Google Scholar 

  • Nielsen HV, Gether U, Schwartz TW (1986) Cat pancreatic eicosapeptide and its biosynthetic intermediate: conservation of a monobasic processing site. Biochem J 240: 69–74.

    PubMed  CAS  Google Scholar 

  • Newcomb R (1983) Peptides in the sinus gland of Cardisoma carnifex: isolation and amino acid analysis. J Comp Physiol [B] 153: 207–221.

    Article  CAS  Google Scholar 

  • Newcomb R (1987) The amino acid sequences of neuropeptides in the sinus gland of the land crab Cardisoma carnifex: a novel neuropeptide proteolysis site. J Neurochem 49: 574–583.

    Article  PubMed  CAS  Google Scholar 

  • Newcomb R, Nordmann JJ (1987) Quantitative HPLC and analysis of rat neurophysin metabolism. Tineurochem Int 11: 229–240.

    Article  CAS  Google Scholar 

  • Newcomb R, Scheller RH (1987) Proteolytic processing of the Aplysia egg-laying hormone and R3-14 neuropeptide precursors. Tij Neurosci 7: 854–863.

    CAS  Google Scholar 

  • Newcomb R, Stuenkel EL, Cooke IM (1985) Characterization, biosynthesis and release of neuropeptides from the X-organ sinus gland system of the crab Cardisoma carnifex. Am Zool 25: 157–171.

    CAS  Google Scholar 

  • Nordmann JJ (1977) Ultrastructural morphometry of the rat neurohypophysis. J Anat 132: 213–218.

    Google Scholar 

  • Nordmann JJ (1985) Hormone content and movement of neurosecretory granules in the rat neural lobe during and after dehydration. Neuroendocrinology 40: 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann JJ, Weatherby TM, Haylett BA (1986) Ultrastructural changes in peptidergic nerve terminals induced by digitonin permeabilization and K + stimulation in the sinus gland of the crab, Cardisoma carnifex. Cell Tiss Res 246 365–371.

    Article  Google Scholar 

  • Orci L, Ravazzola M, Storch MJ, Anderson RGW, Vassali J-D, Perrelet A (1987) Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell 49: 865–868.

    Article  PubMed  CAS  Google Scholar 

  • Russel JT, Brownstein MJ, Gainer H (1981) Time course of appearance and release of 35S cysteine labelled neurophysins and peptides in the neurohypophysis. Brain Res 205: 299–311.

    Article  Google Scholar 

  • Sachs H, Haller E (1968) Further studies on the capacity of the neurohypophysis to release vasopressin. Tiendocrinology 76: 251–262.

    Article  Google Scholar 

  • Scheller RH, Jackson JF, McKallister LB, Rothman BS, Mayeri E, Axel R (1983) A single gene encodes multiple neuropeptides mediating a stereotyped behavior. Cell 32: 7–22.

    Article  PubMed  CAS  Google Scholar 

  • Sherman GT, McKelvy JF, Watson SJ (1986) Vasopressin mRNA regulation in individual hypothalamic nuclei: a northern and in-situ hybridization analysis. J Neursci 6: 1685–1694.

    CAS  Google Scholar 

  • Siwicki K, Beltz B, Kravitz E (1987) Proctolin in identified serotonergic, dopaminergic, and cholinergic neurons in the lobster, Homarus americanus. J Neurosci 7: 522–532.

    PubMed  CAS  Google Scholar 

  • Sossin W, Kirk M, Scheller R (1987) Peptidergic modulation of neuronal circuitry controlling feeding in Aplysia. J Neurosci 7: 671–681.

    PubMed  CAS  Google Scholar 

  • Stuenkel EL (1983) Biosynthesis and axonal transport of proteins and identified peptide hormones in the X-organ sinus gland neurosecretory system. J Comp Physiol B 153: 191–205.

    Article  CAS  Google Scholar 

  • Stuenkel EL (1985) Simultaneous monitoring of electrical and secretory activity in peptidergic neurosecretory terminals of the crab. J Physiol (Lond) 359: 163–187.

    CAS  Google Scholar 

  • Stuenkel EL (1986) A common precursor to two major crab neurosecretory polypeptides. Peptides 7: 397–406.

    Article  PubMed  CAS  Google Scholar 

  • Swanson L, Kuypers H (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and the organization of projections to the pituitary, dorsal vagal complex and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. Tij Comp Neurol 194: 555–570.

    Article  CAS  Google Scholar 

  • Swanson L, Sawchenko P (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Tiannu Rev Neurosci 6: 269–324.

    Article  CAS  Google Scholar 

  • Weatherby TM (1981) Ultrastructure of the sinus gland of the crab Cardisoma carnifex. Cell Tiss Res 220: 293–312.

    Article  CAS  Google Scholar 

  • Webster SB, Keller R (1986) Purification, characterization and amino acid composition of the putative molt-inhibiting hormone (MIH) of Carcinus maenus (Crustacea, Decapoda). Tij Comp Physiol [B] 157: 617–624.

    Article  Google Scholar 

  • Welsh M, Nielsen DA, MacKrell AJ, Steiner DF (1985) Control of insulin gene expression in pancreatic B cells and in an insulin-producing cell line, RIN-5F cells: II regulation of insulin mRNA stability. J Biol Chem 260: 13590–13594.

    PubMed  CAS  Google Scholar 

  • White JK, Stewart K, Krause J, McKelvy J (1985) Biochemistry of peptide-secreting neurons. Physiol Rev 65: 553–606.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Newcomb, R.W., Hartline, D.K., Cooke, I.M. (1988). Changes in Information Content with Physiological History in Peptidergic Secretory Systems. In: Ganten, D., Pfaff, D., Pickering, B. (eds) Stimulus-Secretion Coupling in Neuroendocrine Systems. Current Topics in Neuroendocrinology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73495-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73495-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73497-7

  • Online ISBN: 978-3-642-73495-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics