Skip to main content

Electrophysiological Characteristics of Peptidergic Nerve Terminals Correlated with Secretion

  • Conference paper
Stimulus-Secretion Coupling in Neuroendocrine Systems

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 9))

Abstract

This article reviews studies correlating electrical with secretory activity of a peptidergic neurosecretory system of crabs known as the X-organ — sinus gland system (XOSG). Justification for giving such attention to an invertebrate model derives from the unique observations obtainable by reason of the relatively huge size of axon terminals (in certain species) and the discrete anatomical segregation of the system. These permit (1) experimentation on an intact, purely peptidergic neurosecretory system removed to a chamber, (2) simultaneous intracellular recording from electrodes placed under visual control into somata and terminals, and (3) monitoring of secretion separately from both somata and terminal regions while recording. The XOSG is analogous to the vertebrate hypothalamic-neuro-hypophysial system in function as well as in those details of physiological mechanisms for which comparable information is available. Generalizability of the information obtainable only from the XOSG to other neurosecretory systems thus seems likely.

Work on the crab XOSG has been supported by a series of NSF and NIH grants to I.M.C., including currently NSF grant BNS84-04459 and NIH grant NS15453, as well as by funds from the University of Hawaii Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz AA, Hisaw FL, Papandrea DN (1944) The occurrence of a diabetogenic factor in the eyestalk of crustaceans. Biol Bull 86: 1–5.

    CAS  Google Scholar 

  • Adiyodi R (1985) Reproduction and its control. In: Bliss DE, Mantel LH (eds) The biology of Crustacea, vol 9. Academic, New York, pp 147–215.

    Google Scholar 

  • Andrew RD (1983) Neurosecretory pathways supplying the neurohemal organs in Crustacea. In: Gupta AP (ed) Neurohemal organs of Arthropoda. Thomas, Springfield, pp 90–117.

    Google Scholar 

  • Andrew RD, Saleuddin AS (1978) Structure and innervation of a crustacean neurosecretory cell. Tican J Zool 56: 423–430.

    Google Scholar 

  • Andrew RD, Saleuddin AS (1979) Two-dimensional gel electrophoresis of neurosecretory polypeptides in crustacean eyestalk. Tij Comp Physiol 134: 303–313.

    CAS  Google Scholar 

  • Andrew RD, Orchard I, Saleuddin AS (1978) Structural re-evaluation of the neurosecretory system in the crayfish eyestalk. Cell Tissue Res 190: 235–246.

    PubMed  CAS  Google Scholar 

  • Bicknell R, Flint J, Leng APF, Sheldrick EL (1982) Phasic pattern of electrical stimulation enhances oxytocin secretion from the isolated neurohypophysis. Neurosci Lett 30: 47–50.

    CAS  Google Scholar 

  • Bie P, Thorn NA (1967) In vitro studies of the release mechanism for vasopressin in rats. II. Studies of the possible release of hormone from hypothalamic tissue. Tiacta Endocrinol (Copenh) 56: 139–145.

    CAS  Google Scholar 

  • Bliss DE (1951) Metabolic effects of sinus gland or eyestalk removal in the land crab, Gecarcinus later alls. Anat Rec 111: 502–503.

    Google Scholar 

  • Bliss DE, Welsh JH (1952) The neurosecretory system of brachyuran Crustacea. Tibiol Bull 103: 157–169.

    Google Scholar 

  • Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci USA 77: 1496–1500.

    PubMed  CAS  Google Scholar 

  • Breitwieser GE, Szabo G (1985) Uncoupling of cardiac muscarinic and B-adrenergic receptors from ion channels by a guanine nucleotide analogue. Tinature 317: 538–540.

    CAS  Google Scholar 

  • Brown FA, Cunningham O (1939) Influence of the sinus gland of crustaceans on normal viability and ecdysis. Tibiol Bull 77: 104–114.

    Google Scholar 

  • Bunt A, Ashby E (1967) Ultrastructure of the sinus gland of the crayfish Procambarus clarkii. Gen Comp Physiol 9: 334–342.

    CAS  Google Scholar 

  • Bunt A, Ashby E (1968) Ultrastructural changes in the crayfish sinus gland following electrical stimulation. Tigen Comp Endocrinol 10: 376–382.

    Google Scholar 

  • Chaigneau J (1983) Neurohemal organs in Crustacea. In: Gupta AP (ed) Neurohemal organs of Arthropoda. Thomas, Springfield, pp 53–89.

    Google Scholar 

  • Chang ES, Bruce MJ, Newcomb RW (1987) Purification and amino acid composition of a peptide with molt-inhibiting activity from the lobster, Homarus americanus. Gen Comp Endocrinol 65: 56–64.

    PubMed  CAS  Google Scholar 

  • Cooke IM (1985) Electrophysiological characterization of peptidergic neurosecretory terminals. J Exp Biol 118: 1–35.

    PubMed  CAS  Google Scholar 

  • Cooke IM, Haylett BA (1984) Ionic dependence of secretory and electrical activity evoked by elevated K+ in a peptidergic neurosecretory system. Tij Exp Biol 113: 289–321.

    CAS  Google Scholar 

  • Cooke IM, Stuenkel EL (1985) Electrophysiology of invertebrate neurosecretory cells. In: Poisner AM, Trifaro J (eds) The electrophysiology of the secretory cell. Elsevier, Amsterdam, pp 115–164.

    Google Scholar 

  • Cooke IM, Sullivan RE (1982) Hormones and neurosecretion. In: Atwood H, Sandeman D (eds) The biology of Crustacea. Academic, New York, pp 205–290.

    Google Scholar 

  • Cooke IM, Haylett BA, Weatherby TM (1977) Electrically elicited neurosecretory and electrical responses of the isolated crab sinus gland in normal and reduced calcium salines. J Exp Biol 70: 125–149.

    CAS  Google Scholar 

  • Douglas WW, Poisner AM (1964a) Stimulus-secretion coupling in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis. J Physiol (Lond) 172: 1–18.

    CAS  Google Scholar 

  • Douglas WW, Poisner AM (1964b) Calcium movements in the neurohypophysis of the rat and its relation to the release of vasopressin. J Physiol (Lond) 172: 19–30.

    CAS  Google Scholar 

  • Douglas WW, Rubin RP (1963) The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. Tij Physiol (Lond) 167: 288–310.

    CAS  Google Scholar 

  • Dunlap K, Fischbach GD (1978) Neurotransmitters decrease the calcium component of sensory neurone action potentials. Tinature 276: 837–839.

    CAS  Google Scholar 

  • Dutton A, Dyball REJ (1979) Phasic firing enhances vasopressin release from the rat neurohypophysis. Tij Physiol (Lond) 290: 433–440.

    CAS  Google Scholar 

  • Edgington DR, Stuart AE (1979) Calcium channels in the high resistivity axona membrane of photoreceptors of the giant barnacle. Tij Physiol (Lond) 294: 433–445.

    CAS  Google Scholar 

  • Fernlund P (1976) Structure of a light-adapting hormone from the shrimp, Pandalus borealis. Biochim Biophys Acta 439: 17–25.

    PubMed  CAS  Google Scholar 

  • Fernlund P, Josefsson L (1972) Crustacean color-change hormone: amino acid sequence and chemical synthesis. Tiscience 177: 173–175.

    CAS  Google Scholar 

  • Fingerman M (1985) The physiology and pharmacology of crustacean chromatophores. Am Zool 25: 233–252.

    CAS  Google Scholar 

  • Gabe M (1966) Neurosecretion. Pergamon, Oxford, p 872.

    Google Scholar 

  • Garcia U, Aréchiga H (1986) GABAergic input to crustacean neurosecretory cells. Soc Neurosci Abstr 12: 243.

    Google Scholar 

  • Garcia U, Onetti C, Valdiosera RF (1985) Calcium currents in the secretory neuron soma of the X-organ of the crayfish. Soc Neurosci Abstr 11: 520.

    Google Scholar 

  • Glantz RM, Kirk MD, Aréchiga H (1983) Light input to crustacean neurosecretory cells. Brain Res 265: 307–311.

    PubMed  CAS  Google Scholar 

  • Gorman A, Thomas MV (1978) Changes in the intracellular concentration of free calcium ions in a pace-maker neurone, measured with the metallochromic indicator dye Arsenazo III. Tij Physiol (Lond) 275: 357–376.

    CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85–100.

    PubMed  CAS  Google Scholar 

  • Hanström B (1931) Neue Untersuchungen über Sinnesorgane und Nervensysteme der Crustaceen. I. Z Morphol Ökol Tiere 23: 80–236.

    Google Scholar 

  • Hescheler J, Rosenthal W, Trautwein W, Schultz G (1987) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325: 445–446.

    PubMed  CAS  Google Scholar 

  • Holz GG, Rane SG, Dunlap K (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319: 670–672.

    PubMed  CAS  Google Scholar 

  • Huberman A, Aguilar M (1986) A neurosecretory hyperglycemic hormone from the sinus gland of the Mexican crayfish Procambarus bouvieri. I. Purification and biochemical characterization of the most abundant form of the hormone. Ticomp Biochem Physiol [B] 85: 197–204.

    Google Scholar 

  • Irvine RF, Moor RM (1986) Micro-injection of inositol 1, 3, 4, 5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Tibiochem J 240: 917–920.

    CAS  Google Scholar 

  • Iwasaki S, Satow Y (1969) Spontaneous grouped discharge of secretory neuron soma in X-organ of crayfish, Procambarus clarkii. J Physiol Soc Jpn 31: 629–630.

    CAS  Google Scholar 

  • Iwasaki S, Satow Y (1971) Sodium-and calcium-dependent spike potentials in the secretory neuron soma of the X-organ of the crayfish. Tij Gen Physiol 57: 216–238.

    CAS  Google Scholar 

  • Jaros PP (1978) Tracing of neurosecretory neurons in crayfish optic ganglia by cobalt iontophoresis. Cell Tissue Res 194: 297–302.

    PubMed  CAS  Google Scholar 

  • Jaros PP (1979) Immunocytochemical demonstration of the neurosecretory X-organ complex in the eyestalk of the crab Carcinus maenas. Histochemistry 63: 303–310.

    PubMed  CAS  Google Scholar 

  • Kaczmarek LK (1987) The role of protein kinase C in the regulation of ion channels and neurotransmitter release. Trends Neurosci 10: 30–34.

    CAS  Google Scholar 

  • Katz B, Miledi R (1967) The timing of calcium action during neuromuscular transmission. Tij Physiol (Lond) 189: 535–544.

    CAS  Google Scholar 

  • Katz B, Miledi R (1969a) Tetrodotoxin-resistant electrical activity in presynaptic terminals. J Physiol (Lond) 203: 459–487.

    CAS  Google Scholar 

  • Katz B, Miledi R (1969b) Spontaneous and evoked activity of motor nerve endings in calcium Ringer. J Physiol (Lond) 203: 689–706.

    CAS  Google Scholar 

  • Keller R (1983) Biochemistry and specificity of the neurohemal hormones in Crustacea. In: Gupta AP (ed) Neurohemal organs of Arthropoda. Thomas, Springfield, pp 118–148.

    Google Scholar 

  • Keller R, Kegel G (1984) Studies on crustacean eyestalk neuropeptides by use of high performance liquid chromatography. In: Hoffmann J, Porchet M (eds) Biosynthesis, metabolism and mode of action of invertebrate hormones. Springer, Berlin Heidelberg New York, pp 145–154.

    Google Scholar 

  • Keller R, Jaros PP, Kegel G (1985) Crustacean hyperglycemic neuropeptides. Am Zool 25: 207–221.

    CAS  Google Scholar 

  • Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230: 25–32.

    PubMed  CAS  Google Scholar 

  • Kleinholz LH (1936) Crustacean eyestalk hormone and retinal pigment migration. Biol Bull 70: 159–184.

    Google Scholar 

  • Lemos JR, Nordmann JJ (1986) Ionic channels and hormone release from peptidergic nerve terminals. Tij Exp Biol 124: 53–72.

    CAS  Google Scholar 

  • Lemos JR, Nordmann JJ, Cooke IM, Stuenkel EL (1986) Single channels and ionic currents in peptidergic nerve terminals. Nature 319: 410–412.

    PubMed  CAS  Google Scholar 

  • Levitan IB (1985) Phosphorylation of ion channels. J Membr Biol 87: 177–190.

    PubMed  CAS  Google Scholar 

  • Llinás R, Steinberg IZ, Walton K (1981a) Presynaptic calcium currents in squid giant synapse. Biophys J 33: 289–322.

    PubMed  Google Scholar 

  • Llinás R, Steinberg IZ, Walton K (1981b) Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys J 33: 323–352.

    PubMed  Google Scholar 

  • Loh Y, Same Y, Gainer H (1975) Heterogeneity of proteins synthesized, stored and released by the bag cells of Aplysia californica. J Comp Physiol 100: 283–295.

    CAS  Google Scholar 

  • Mangerich S, Keller R, Dircksen H (1986) Immunocytochemical identification of structures containing putative red pigment-concentrating hormone in two species of decapod crustaceans. Cell Tissue Res 245: 377–386.

    CAS  Google Scholar 

  • Martin G, Keller R, Kegel G, Besee G, Jaros P (1984) The hyperglycemic neuropeptide of the terrestrial isopod, Porcellio dilatatus. I: isolation and characterization. Gen Comp Endocrinol 55: 208–216.

    PubMed  CAS  Google Scholar 

  • Mason W, Dyball R (1986) Single ion channel activity in peptidergic nerve terminals of the isolated rat neurohypophysis related to stimulation of neural stalk axons. Tibrain Res 383: 279–286.

    CAS  Google Scholar 

  • Matteson DR, Armstrong CM (1986) Properties of two types of calcium channels in clonal pituitary cells. Tij Gen Physiol 87: 161–182.

    CAS  Google Scholar 

  • Mattson M (1986) New insights into neuroendocrine regulation of the crustacean molt cycle. Zool Sci 3: 733–744.

    CAS  Google Scholar 

  • Nagano M (1983) Effects of 5HT and GABA on spontaneous electrical activity of a peptide neurosecretory system. J Physiol Soc Jpn 45: 418.

    Google Scholar 

  • Nagano M (1986a) Heterogeneity of neurons in the crustacean X-organ as revealed by intracellular recording and injection of horseradish peroxidase. Brain Res 362: 379–383.

    PubMed  CAS  Google Scholar 

  • Nagano M (1986b) Regional inhibitory effects of 5HT and GABA on the spontaneous electrical activity of a crab neurosecretory system. Biomed Res 7: 267–277.

    CAS  Google Scholar 

  • Nagano M, Cooke IM (1987) Comparison of electrical responses of terminals, axons, and somata of a peptidergic neurosecretory system. Tij Neurosci 7: 634–648.

    CAS  Google Scholar 

  • Newcomb R (1983) Peptides in the sinus gland of the land crab Cardisoma carnifex: isolation and amino acid analysis. J Comp Physiol [B] 153: 207–221.

    CAS  Google Scholar 

  • Newcomb R (1987) Amino acid sequences of neuropeptides in the sinus gland of the land crab Cardisoma carnifex: a novel neuropeptide proteolysis site. J Neurochem 49/2: 574–583.

    Google Scholar 

  • Newcomb R, Stuenkel EL, Cooke IM (1985) Characterization, biosynthesis and release of neuropeptides from the X-organ sinus gland system of the crab Cardisoma carnifex. Am Zool 25: 157–171.

    CAS  Google Scholar 

  • Nilius B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium channel in ventricular cells. Nature 316: 443–446.

    PubMed  CAS  Google Scholar 

  • Niwa A, Kawai N (1982) Tetrodotoxin-resistant propagating action potentials in presynaptic axon of the lobster. Tij Neurophysiol 47: 353–361.

    CAS  Google Scholar 

  • Nordmann JJ (1976) Evidence for calcium inactivation during hormone release in the rat neurohypophysis. J Exp Biol 65: 669–683.

    PubMed  CAS  Google Scholar 

  • Nordmann JJ, Weatherby TM, Haylett BA (1986) Ultrastructural changes in isolated peptidergic nerve terminals induced by digitonin permeabilization and K+ stimulation in the sinus gland of the crab, Cardisoma carnifex. Cell Tissue Res 246: 365–371.

    PubMed  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channels with different calcium agonist sensitivity. Nature 316: 440–443.

    PubMed  CAS  Google Scholar 

  • Obaid AL, Orkand RK, Gainer H, Salzberg BM (1985) Active calcium responses recorded optically from nerve terminals of the frog neurohypophysis. J Gen Physiol 85:481–4890.

    PubMed  CAS  Google Scholar 

  • Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189: 347–358.

    PubMed  CAS  Google Scholar 

  • Passano LM (1951) The X-organ-sinus gland neurosecretory system in crabs. Anat Rec 111: 502.

    Google Scholar 

  • Passano LM (1953) Neurosecretory control of molting in crabs by the X-organ-sinus gland complex. Physiol Comp Oecol 3: 155–189.

    CAS  Google Scholar 

  • Perney TM, Hirning LD, Leeman SE, Miller RJ (1986) Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proc Natl Acad Sci USA 83: 6656–6659.

    PubMed  CAS  Google Scholar 

  • Pfaffmger PJ, Martin JM, Hunter DD, Nathenson NN, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317: 536–538.

    Google Scholar 

  • Potter DD (1956) Observations on the neurosecretory system of portunid crabs. PhD thesis, Harvard University.

    Google Scholar 

  • Potter DD (1958) Observations on the neurosecretory system of Portunid crabs. In: Bargmann W, Hanström B, Scharrer E, Scharrer B (eds) Zweites Internationales Symposium über Neurosekretion. Springer, Berlin Heidelberg New York, pp 113–118.

    Google Scholar 

  • Quackenbush LS, Fingerman M (1984) Regulation of neurohormone release in the fiddler crab, Ucapugilator: effects of gamma-aminobutyric acid, octopamine, met-enkephalin, and beta-endorphin. Ticomp Biochem Physiol [C] 79: 77–84.

    CAS  Google Scholar 

  • Rao KR, Riehm JP, Zahnow CA, Kleinholz LH, Tarr GE, Johnson L, Norton S, Landau M, Semmes OJ, Sattleberg M, Jorenby WH, Hintz MF (1985) Characterization of a pigment-dispersing hormone in eyestalks of the fiddler crab Uca pugilator. Proc Natl Acad Sci USA 82: 5319–5322.

    PubMed  CAS  Google Scholar 

  • Rehm M (1959) Observation on the localisation and chemical constitution of neurosecretory material in nerve terminals in Carcinus maenas. Acta Histochem (Jena) 7: 88–106.

    CAS  Google Scholar 

  • Reichardt LF, Kelly RB (1983) A molecular description of nerve terminal function. Tiannu Rev Biochem 52: 871–926.

    CAS  Google Scholar 

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301: 569–574.

    PubMed  CAS  Google Scholar 

  • Ruben P, Cooke I (1987) Comparison of cation channels in isolated and in situ peptidergic neurosecretory terminals. Biophys J 51: 250 a.

    Google Scholar 

  • Ruben P, Thompson S (1984) Rapid recovery from K current inactivation on membrane hyperpolarization in molluscan neurons. Tij Gen Physiol 84: 861–875.

    CAS  Google Scholar 

  • Scudamore HH (1947) The influence of the sinus glands upon molting and associated changes in the crayfish. Physiol Zool 20: 187–208.

    PubMed  CAS  Google Scholar 

  • Shivers R (1976) Exocytosis of neurosecretory granules from the crustacean sinus gland in freeze-fracture. J Morphol 150: 227–252.

    Google Scholar 

  • Silverthorn SU (1975) Neurosecretion in the sinus gland of the fiddler crab, Uca pugnax. Cell Tissue Res 165: 129–133.

    PubMed  CAS  Google Scholar 

  • Skinner D (1985) Interacting factors in the control of the crustacean molt cycle. Am Zool 25: 275–284.

    CAS  Google Scholar 

  • Sperelakis N (1985) Phosphorylation hypothesis of the myocardial slow channels and control of Ca2+ influx. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology and arrhythmias. Grune and Stratton, New York, pp 123–135.

    Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1, 4, 5-trisphosphate. Nature 306: 67–69.

    PubMed  CAS  Google Scholar 

  • Stuenkel EL (1983) Biosynthesis and axonal transport of proteins and identified peptide hormones in the X-organ sinus gland neurosecretory system. J Comp Physiol [B] 207: 191–205.

    Google Scholar 

  • Stuenkel EL (1985) Simultaneous monitoring of electrical and secretory activity in peptidergic neurosecretory terminals of the crab. J Physiol (Lond) 359: 163–187.

    CAS  Google Scholar 

  • Stuenkel EL (1986) A common precursor to two major crab neurosecretory peptides. Peptides 7: 397–406.

    PubMed  CAS  Google Scholar 

  • Valdiosera R, Onetti C, Garcia U (1986) Calcium-activated inward current in neurosecretory cell bodies. Biophys J 49: 368 a.

    Google Scholar 

  • Van Herp F, Van Buggenum HJM (1979) Immunocytochemical localization of hyperglycemic hormone (HGH) in the neurosecretory system of the eyestalk of the crayfish Astacus leptodactylus. Experientia 35: 1527–1529.

    PubMed  Google Scholar 

  • Weatherby TM (1981) An ultrastructural study of the sinus gland of the crab, Cardisoma carnifex. Cell Tissue Res 220: 293–312.

    PubMed  CAS  Google Scholar 

  • Weatherby TM, Haylett BA (1985) Ultrastructural changes associated with K+-evoked peptide secretion from a neurohemal organ of the crab, Cardisoma carnifex. Cell Tissue Res 242: 67–73.

    PubMed  CAS  Google Scholar 

  • Webster SG, Keller R (1986) Purification, characterisation and amino acid composition of the putative moult-inhibiting hormone (MIH) of Carcinus maenas (Crustacea, Deca-poda). Tij Comp Physiol [B] 156: 617–624.

    CAS  Google Scholar 

  • Welsh JH (1941) The sinus glands and 24-hour cycles of retinal pigment migration in the crayfish. J Exp Zool 86: 35–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stuenkel, E.L., Cooke, I.M. (1988). Electrophysiological Characteristics of Peptidergic Nerve Terminals Correlated with Secretion. In: Ganten, D., Pfaff, D., Pickering, B. (eds) Stimulus-Secretion Coupling in Neuroendocrine Systems. Current Topics in Neuroendocrinology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73495-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73495-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73497-7

  • Online ISBN: 978-3-642-73495-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics