Advertisement

Ausprägung von zellulären Onkogenen in menschlichen Teratomzellinien

  • H. Tesch
  • R. Fürbaß
  • J. Casper
  • H.-J. Schmoll
  • D. L. Bronson
Conference paper

Zusammenfassung

Zelluläre Onkogene gehören zu einer Gruppe evolutionär stark konservierter Gene, die häufig in menschlichen Tumorzellen aktiviert oder dereguliert sind. Wir untersuchten die Ausprägung von 14 zellulären Onkogenen in menschlichen Keimzelltumorzellinien in Northern-Blot-Analysen. Unsere Ergebnisse zeigen, daß die Onkogene p53, c-Ki-ras2, c-Ha-ras1 und c-rafl in vergleichbaren Mengen in allen Keimzelltumorzellinien und in zahlreichen anderen Tumorzellen ausgeprägt werden. Die Ausprägung des c-myc-Gens wurde in einigen aber nicht in allen Keimzelltumorzellinien beobachtet. Dagegen konnten N-myc- sowie c-fos-spezifische Transkripte in allen Keimzelltumorzellinien aber nicht in einer Reihe anderer Tumorzellen nachgewiesen werden. In Southern-Blot-Analysen fand sich kein Hinweis auf eine Amplifikation, Deletion oder Umlagerung der N-myc- und c-fos-Gene. Diese Ergebnisse zeigen, daß menschliche Keimzelltumorzellinien unterschiedliche Onkogene vermehrt ausprägen.

Abstract

Cellular oncogenes are frequently activated or deregulated in human tumor cells. We have analyzed by Northern blot experiments the expression of 14 cellular oncogenes in cell lines established from human teratocarcinomas. Our results indicate that some oncogenes (i.e., p53, c-Ki-ras2, c-Ha-ras1 and c-raf1) are expressed in comparable amounts in all teratoma lines and in a variety of other human tumor cell lines tested. Low expression of c-myc was found in some but not all teratoma lines. Expression of the N-myc and the c-fos genes was found in significant amounts in all teratoma lines analyzed, whereas these genes could not be detected in a variety of other human tumor cells. Southern blot experiments give no indication of amplification or rearrangements of the N-myc or c-fos genes in the teratoma lines. Thus, our data indicate that human teratoma cell lines have a distinct pattern of expression of cellular oncogenes which is not detected in a variety of other human tumors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alitalo K, Winqvist R, Lin CC, De La Chapelle A, Schwab M, Bishop JM (1984) Aberrant expression of an amplified c-myb oncogene in two cell lines from a colon carcinoma. Proc Natl Acad Sci USA 81: 4534–4538PubMedCrossRefGoogle Scholar
  2. Atkin NB, Baker MC (1983) i (12 p): Specific chromosomal marker in the seminoma and malignant teratoma of the testis. Cancer Genet Cytogenet 10: 199–204PubMedCrossRefGoogle Scholar
  3. Bishop JM (1987) The molecular genetics of cancer. Science 235, 305–311PubMedCrossRefGoogle Scholar
  4. Bronson DL, Bronson JG, Fraley EE (1983 a) Germ cell tumors of mice and men: The teratocarcinoma models and their clinical implications. Testis tumors, pp 77–91. Williams & Wilkins, BaltimoreGoogle Scholar
  5. Bronson DL, Clayman RV, Fraley EE (1983b) Human Testicular germ cell tumors in vitro. In: Damjanov I, Solter D, Knowless BB (eds) The Human Teratomas: Experimental and Clinical Biology. Human Press, Clifton, New Jersey, pp 267–284CrossRefGoogle Scholar
  6. Bronson DL, Vesella RL, Fraley EE (1984) Differentiation potential of human embryonal carcinoma cell lines. Cell Differ 15: 129–132PubMedCrossRefGoogle Scholar
  7. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124PubMedCrossRefGoogle Scholar
  8. Casper J, Schmoll HJ, Schnaidt U, Fonatsch E (1987) Cell lines of germinal cancer Int J Androl 10: 105–113PubMedCrossRefGoogle Scholar
  9. Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR (1982) Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci USA 79, 4848PubMedCrossRefGoogle Scholar
  10. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF (1984) Molecular cloning of a new transforming gene from a chemically transformed human cell line Nature 311: 29–33PubMedCrossRefGoogle Scholar
  11. Cotte CA, Easty GC, Neville Am (1981) Establishment and properties of human germ cell tumours in tissue culture. Cancer Res 41: 1422–1427PubMedGoogle Scholar
  12. Curran T, MacConnell WP, van Straaten F, Verma IM (1983) Structure of the FBJ murine oseosarcoma virus genome: molecular cloning of its associated helpler virus and the cellular homolog of the v-fos gene from mouse and human cells. Mol cell Biol 3: 914–921PubMedGoogle Scholar
  13. Dalla-Favera R, Gelmann EP, Gallo RC, Wong-Staal F (1981) A human onc gene homologous to the tranforming gene (v-sis) of simian sarcoma virus Nature 292: 31–35PubMedCrossRefGoogle Scholar
  14. Dalla-Favera R, Wong-Staal F, Gallo RC (1982) Onc gene amplification in promyelocytic leukaemia cell line HL-60 and primary laukaemic cells of the same patient Nature 299: 61–63PubMedCrossRefGoogle Scholar
  15. Damjanov I (1986) Testicular germ cell tumors as model of carcinogenesis and embryogenesis. In: Javadpour N (ed) Principles and Management of Testicular Cancer. Thiem, New York pp 73–87Google Scholar
  16. Delozier-Blanchet CD, Engel E, Walt H (1985) Isochromosome 12p in malignant testicular tumors. Cancer Genet Cytogenet 15: 375–376PubMedCrossRefGoogle Scholar
  17. Eick D, Piechaczyk M, Henglein B, Blanchard JM, Traub B, Kotier E, Wiest S, Lenoir G, Bornkamm GW (1985) Aberrant c-my RNAs of Burkitt’s lymphoma cells have longer half-lives. EMBO J. 4: 3717–3725PubMedGoogle Scholar
  18. Eliyahu D, Raz A, Gruss P, Givol D, Oren M (1984) Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312: 646–649PubMedCrossRefGoogle Scholar
  19. Fasano O, Aldrich T, Tamanoi F, Taparowsky, E, Furth M, Wigler M (1984) Analysis of the transforming potential of the human H-ras gene by random mutagenesis Proc Natl Acad Sci USA 81: 4008–4012PubMedCrossRefGoogle Scholar
  20. Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analyt Biochem, 132: 6–13PubMedCrossRefGoogle Scholar
  21. Fogh J, Trempe G (1975) New human tumor cell lines. In: Fogh J (ed) Human tumor cells in vitro. Plenum Press, New York, pp 115–159Google Scholar
  22. Franchini G, Wong-Staal F, Baluda MA, Lengel C, Tronick SR (1983) Structural organization and expression of human DNA sequences related to the transforming gene of avian myeloblastosis virus Proc Natl Acad Sci USA 80: 7385–7389PubMedCrossRefGoogle Scholar
  23. Jakobovits A, Schwab M, Bishop JM, Martin GR (1985) Expression of N-myc in teratocarcinoma stem cells and mouse embryos Nature 318: 188–191PubMedCrossRefGoogle Scholar
  24. Jansen HW, Lurz R, Bister K, Bonner TI, Mark GE, Rapp UR (1984) Homologous cell-derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611 Nature 307: 281–284PubMedCrossRefGoogle Scholar
  25. Kan NC, Flordellis CS, Mark GE, Duesberg PH, Papas TS (1984) A common onc gene sequence transduced by avian carcinoma virus MH2 and by murine sarcoma virus 3611 Science 23: 813–816CrossRefGoogle Scholar
  26. Koeffler HP, Miller C, Nicolson MA, Ranyard J, Bosselman RA (1986) Increased expression of p53 protein in human leukemia cells Proc Natl Acad Sci USA 83: 4035–4039PubMedCrossRefGoogle Scholar
  27. Land H, Parada LF, Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes Nature 304: 596–602PubMedCrossRefGoogle Scholar
  28. Lee WH, Murphree AL, Benedict WF (1984) Expression and amplification of the N-myc gene in primary retinoblastoma Nature 309: 458–460PubMedCrossRefGoogle Scholar
  29. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD (1983) Amplification and expression of the c-myc oncogene in human lung cancer cell lines Nature 306: 194–195PubMedCrossRefGoogle Scholar
  30. Lynch SA, Brugge JS, Levine JM (1986) Induction of altered c-src product during neural differentiation of embryonal carcinoma cells Science 234: 873–876PubMedCrossRefGoogle Scholar
  31. Maniatis T, Fritsch EF, Sambrock J (1982) Molecular cloning. Cold Spring Harbour LaboratoryGoogle Scholar
  32. Moos M, Gallwitz D (1983) Structure of two human β-actin-related processed genes one of which is located next to a simple repetitive sequence EMBO J 2: 757–761PubMedGoogle Scholar
  33. Müller R, Müller D, Verrier B, Bravo R, Herbst H (1986) Evidence that expression of c-fos protein in amnion cells is regulated by externa signals EMBO J 5: 311–316PubMedGoogle Scholar
  34. Müller R, Wagner EF (1985) Differentiation of F9 teratocarcinoma stem cells after transfer of c-fos protooncogenes Nature, 311: 438–442CrossRefGoogle Scholar
  35. Parker RC, Mardon G, Lebo RV, Varmus HE, Bishop JM (1985) Isolation of duplicated human c-src genes located on chromosomes 1 and 20 Mol Cell Biol 5: 831–838PubMedGoogle Scholar
  36. Pfeifer-Ohlsson S, Goustin AS, Rydnert J, Wahlström T, Bjersing L, Stehelin D, Ohlsson R (1984) Spatial and temporal pattern of cellular myc oncogene expression in developing human placenta: implications for embryonic cell proliferation Cell 38: 585–596PubMedCrossRefGoogle Scholar
  37. Reddy EP, Reynolds RK, Santos E, Barbacid M (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladdar carcinoma oncogene Nature 300: 149–152PubMedCrossRefGoogle Scholar
  38. Rogel A, Popliker M, Webb CG, Oren M (1985) p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos and tumors Mol Cell Biol 5: 2851–2855PubMedGoogle Scholar
  39. Rotter V (1983) p53, a transformation-related cellular-encoded protein, can be used as a biochemical marker for the detection of primary mouse tumor cells Proc Natl Acad Sci USA 80: 2613–2617PubMedCrossRefGoogle Scholar
  40. Santos E, Martin Zanca D, Reddy EP, Pierotti MA, Delia-Porta G, Barbacid M (1984) Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient Science 223: 661–664PubMedCrossRefGoogle Scholar
  41. Sarnow P, Ho YS, Williamms J, Levine AJ (1982) Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54kd cellular protein in transformed cells Cell 28: 287–294CrossRefGoogle Scholar
  42. Sassone-Corsi P, Verma IM (1987) Modulation of c-fos gene transcription by negative and positive cellular factors Nature 326: 507–510PubMedCrossRefGoogle Scholar
  43. Schwab M, Alitalo K, Klemplnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J (1983) Amplified DNA with limited homology to myc cellular oncogene shared by human neuroblastoma cell lines and a neuroblastoma tumour Nature 305: 245–248PubMedCrossRefGoogle Scholar
  44. Schwab M, Ellison J, Busch M, Rosenau W, Varmus HE, Bishop JM (1984) Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma Proc Natl Acad Sci USA 81: 4940–4944PubMedCrossRefGoogle Scholar
  45. Semba K, Kamata N, Toyoshima K, Yamamota T (1985) A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma Proc Natl Acad Sci USA 821: 6497–6501CrossRefGoogle Scholar
  46. Shih C, Weinberg RA (1982) Isolation of a transforming sequence from a human bladder carcinoma cell line Cell 29: 161–169PubMedCrossRefGoogle Scholar
  47. Shimizu D, Goldfarb M, Perucho M, Wigler M (1983) Isolation and preh’minary characterization of the transforming gene of a human neuroblastoma cell line Proc Natl Acad Sci USA 80: 383–387PubMedCrossRefGoogle Scholar
  48. Sikora K, Evan G, Watson J (1987) Oncogenes and germ cell tumours Int J Androl 10: 57–67PubMedCrossRefGoogle Scholar
  49. Slamon DJ, DeKernion JB, Verma IM, Cline MJ (1984) Expression of cellular oncogenes in human malignancies Science 224: 256–262PubMedCrossRefGoogle Scholar
  50. Sporn MB, Roberts AB (1985) Autocrine growth factors and cancer nature 313: 745–747PubMedCrossRefGoogle Scholar
  51. Sweet RW, Yokoyama S, Kamata T, Reramisco JR, Rosenberg M, Gross M (1984) The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity nature 311: 273–275PubMedCrossRefGoogle Scholar
  52. Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH (1982) Mechanism of activation of a human oncogene Nature 300: 143–149PubMedCrossRefGoogle Scholar
  53. Tainsky MA, Cooper CS, Giovanella BC, GF (1984) An activated rasN gene: detected in late but not early passage human PAI teratocarcinoma cells Science 225: 643PubMedCrossRefGoogle Scholar
  54. Tobaly-Tapiero J, Saal F, Peries J, Emanoil-Ravier R (1986) Amplification and rearrangement of Kiras oncogene in human teratocarcinoma-derived cell lines Biochimie 68: 1019–1023PubMedCrossRefGoogle Scholar
  55. Vousden KH, Bos JL, Marshall CJ, Phillips DH (1986) Mutations activating human c-Ha-rasl protooncogene (HRAS1) induced by chemical carcinogens and depurination Proc Natl Acad Sci USA 83: 1222–1226PubMedCrossRefGoogle Scholar
  56. Wang N, Trend B, Bronson DL, Fraley EE (1980) Nonrandom abnormalities in chromosome 1 in human testicular cancers. Cancer Res 40: 796–802PubMedGoogle Scholar
  57. Watson JV, Stewart J, Evan GI, Ritson A, Sikora K (1986) The clinical significance of flow cytometric c-myc oncoprotein quantitation in testicular cancer Br J Cancer 53: 331–337PubMedCrossRefGoogle Scholar
  58. Wolf D, Laver-Rudich Z, Rotter V (1985) In vitro expression of human p53 cDNA clones and characterization of the cloned human p53 gene Mol Cell Biol 5: 1887–1893PubMedGoogle Scholar
  59. Xu Y, Ishii S, Clark AJL, Sullivan M, Wilson RK, Ma DP, Roe BA, Merlino GT, Pastan I (1984) Human epidermal growth factor receptor cDNA is homologous to a variety of RNAs overproduced in A431 carcinoma cells Nature 309: 806–810PubMedCrossRefGoogle Scholar
  60. Yokota J, Tsunetsugu-Yokota Y, Battifora H, Le Fevre C, Cline MJ (1986) Alterations of myc, myb and ras-Ha proto-oncogenes in cancers are frequent and show clinical correlation Science 231: 261–265PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • H. Tesch
  • R. Fürbaß
  • J. Casper
  • H.-J. Schmoll
  • D. L. Bronson

There are no affiliations available

Personalised recommendations