Analytical Variability of Biological Parameters of Exposure and Early Effects

  • R. F. M. Herber
  • K.-H. Schaller
Conference paper
Part of the International Archives of Occupational and Environmental Health Supplement book series (OCCUPATIONAL)


In occupational medicine, the objective of any examination is to obtain a finding which can be related to the individual subject. In the case of exposure to hazardous substances, this finding is usually the result of an analytical determination of:
  1. 1.

    The concentration of the substance itself in various biological media (blood, urine, expired air, hair, fingernails, adipose tissue and saliva)

  2. 2.

    The concentration products (metabolites) in the same media (1 and 2: biological parameters of exposure) (Lauwerys 1983)

  3. 3.

    Biological parameters of early effects that are the result of the reaction of the organism to exposure (biological parameters of early effects) (Lauwerys 1983)

and/or the assessment of the health risk by estimating the external exposure to the chemical, i.e. ambient monitoring of the airborne concentration of the chemical (Zielhuis 1985).


Biological Parameter Levulinic Acid Hippuric Acid Mandelic Acid Analytical Variability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angerer J, Schaller KH, Seiler H (1983) The pre-analytical phase of toxicological monitoring examinations in occupational medicine. Trends Anal Chem 2: 257–261CrossRefGoogle Scholar
  2. Berlin A, Schaller KH (1974) European standardized method for the determination of delta amino levulinic acid dehydratase activity in blood. Z Klin Chem Klin Biochem 12: 389–390PubMedGoogle Scholar
  3. Berlin A, Wolff AH, Hasegawa Y (eds) (1979) The use of biological specimens for the assessment of human exposure to environmental pollutants. Nijhoff, The HagueGoogle Scholar
  4. Brockmann W, Laurig W, Nottbohm L (1981) Vereinfachung des “Biological Monitoring” durch ein statistisches Entscheidungsmodell. Arbeitsmed Sozialmed Prä-ventivmed 16: 196–200Google Scholar
  5. Despaux-Pagès N, Camoy E, Bohun C, Boudëre C (1986) Delta aminolevulinic acid dehydratase amounts in lead-exposed subjects: description of a method correlated with the immunoturbidimetric assay. Int Arch Occup Environ Health 57: 303–313PubMedCrossRefGoogle Scholar
  6. Goldstein RB, Silverberg JS, Martin HF (1984) A multivariate statistical method for the establishment of maximum allowable exposure to toxic materials in the workplace. Am J Ind Med 6: 459–473PubMedCrossRefGoogle Scholar
  7. Hackathorn DR, Brinkman WJ, Hathaway TR, Talbott TD, Thompson LR (1983) Validation of a whole blood method for Cholinesterase monitoring. Am Ind Hyg Assoc 1 44: 547–551CrossRefGoogle Scholar
  8. Herber RFM (1980) Estimation of blood lead values from blood porphyrin and urinary 5-aminolevulinic acid levels in workers. Int Arch Occup Environ Health 45: 169–179PubMedCrossRefGoogle Scholar
  9. Keller H, Guder WG, Hansert E, Stamm D (1985) Biological influence factors and in-terference factors in clinical chemistry: general considerations. J Clin Chem Clin Biochem 23: 3–6PubMedGoogle Scholar
  10. Kneip TJ, Friberg L (1986) Sampling and analytical methods. In: Handbook on the toxicology of metals, vol 1, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  11. Lauwerys RR (1983) Industrial chemical exposure: guidelines for biological monitoring. Biomedical, Davis CAGoogle Scholar
  12. Mosczcynski P, Lisiewicz J (1985) Occupational exposure to benzene, toluene and xylene and the lymphocyte lysosomal iV-acetyl-beta-D-glucosaminidase. Ind Health 23: 47–51CrossRefGoogle Scholar
  13. Rabinowitz MB, Leviton A, Needleman HL (1986) Occurrence of elevated protoporphyrin levels in relation to lead burden in infants. Environ Res 39: 253–257PubMedCrossRefGoogle Scholar
  14. Shepard MDS, Penberthy PA, Fraser CG (1981) Short-and long-term biological variation in analyses in urine of apparently healthy individuals. Clin Chem 27: 569–573Google Scholar
  15. Tomokuni K, Hirai Y (1985) Effect of urea on the simple determination of Ô-aminolevulinic acid in urine. Ind Health 23: 295–297PubMedCrossRefGoogle Scholar
  16. Zielhuis RL (1985) Biological monitoring: confusion in terminology. Am J Ind Med 8: 515–51PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • R. F. M. Herber
  • K.-H. Schaller

There are no affiliations available

Personalised recommendations