Role of Platelet-Activating Factor and Structurally Related Alkyl Phospholipids in Immune and Cytotoxic Processes

  • P. Braquet
  • D. Hosford
  • M. Braquet
Conference paper


Alkyl phospholipids are a diverse chemical species characterized structurally by the presence of an ether bond at the sn-1 position of the glycerol moiety. This ether linkage confers unique pharmacological properties upon this group of molecules and distinguishes them from other phospholipids, which usually possess an ester linkage at this position. In this review we consider the role of two different classes of these compounds, platelet-activating factor (PAF) and the structurally related alkyl lysophospholipids (ALP), in modulating the complex system of host defenses, in particular the direct effects of PAF on cellular interactions in the immune response and the tumoricidal activity of ALP.


Ether Lipid Large Granular Lymphocyte Suppressor Cell Activity K562 Target Cell Human Leukemic Cell Line HL60 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreesen R (1988) Ether lipids in the therapy of cancer. In: Braquet P, Mangold HK, Vargaftig BB (eds) Biologically active ether lipids. Karger, Basel, pp 118–132 (Progress in biochemical pharmacology, vol 22 )Google Scholar
  2. Andreesen R, Giese V (1987) Differential effects of ether lipids on the activity and secretion of interleukin-1 and interleukin-2. Lipids 22: 836–841PubMedCrossRefGoogle Scholar
  3. Andreesen R, Modolell M, Weltzien HU, Eibl H, Common HH, Lohr GW, Munder PG (1978) Selective destruction of human leukemic cells by alkyllysophospholipids. Cancer Res 38: 3894–3899PubMedGoogle Scholar
  4. Andreesen R, Modolell M, Weltzien HU, Munder PG (1979) Alkyllysophospholipid induced suppression of human lymphocyte response to mitogens and selective killing of lymphoblasts. Immunobiology 156: 498–508Google Scholar
  5. Bador H, Morelis R, Louisot P (1983) Biochemical evidence for role of alkyl-lysophospholipids on liver sialyltransferase. Int J Biochem 15: 1137–1142PubMedCrossRefGoogle Scholar
  6. Barrett ML, Lewis GP, Ward S, Westwick J (1986) Platelet-activating factor modulates interleukin-2induced proliferation of human T-lymphoblasts. Br J Pharmacol 89: 505 PGoogle Scholar
  7. Barrett ML, Lewis GP, Ward S, Westwick J (1987) Platelet-activating factor induces interleukin 1 production from human adherent macrophages. Br J Pharmacol 90: 113 PGoogle Scholar
  8. Bausert W (1978) Der Einfluß von synthetischen Lysolecithin Analoga auf das Wachstum experimenteller Tumoren der Maus. PhD Thesis, University of Freiburg, FreiburgGoogle Scholar
  9. Behrens T, Goodwin JS (1987) Platelet-activating factor enhances proliferation of human OKT4(+) T lymphocytes. Clin Res 35: 893Google Scholar
  10. Berdel WE (1982) Antineoplastic activity of synthetic lysophospholipid analogs. Blut 44: 71–78PubMedCrossRefGoogle Scholar
  11. Berdel WE (1987) Ether lipids and analogs in experimental cancer therapy. A brief review of the Munich experience. Lipids 22: 970–973PubMedCrossRefGoogle Scholar
  12. Berdel WE, Bausert WR, Weltzien HU, Modolell ML, Widmann KH, Munder PG (1980) The influence of alkyl-lysophospholipids and lysophospholipid-activated macrophages on the development of metastasis of Lewis lung carcinoma. Eur J Cancer 16: 1199–1204PubMedCrossRefGoogle Scholar
  13. Berdel WE, Fink U, Egger B, Reichert A, Munder PG, Rastetter J (1981a) Alkyl-lysophospholipids inhibit the growth of hyper nephroid carcinomas in vitro. J Cancer Res Clin Oncol 101: 325–330PubMedCrossRefGoogle Scholar
  14. Berdel WE, Fink U, Egger B, Reichert A, Munder PG, Rastetter J (1981b) Inhibition by alkyl-lysophospholipids of tritiated thymidine uptake in cells of human malignant Urologie tumors. J Natl Cancer Inst 66: 813–817PubMedGoogle Scholar
  15. Berdel WE, Greiner E, Fink U, Stavrou D, Reichert A, Rastetter J, Hoffman DR, Snyder F (1983) Cytotoxicity of alkyl-lysophospholipid derivatives and low-alkyl-cleavage enzyme activities in rat brain tumor cells. Cancer Res 43: 541–545PubMedGoogle Scholar
  16. Berdel WE, Greiner E, Fink U, Zänker KS, Stavrou D, Trappe A, Fahlbusch R, Reichert A, Rastetter J (1984) Cytotoxic effects of alkyl-lysophospholipids in human brain tumor cells. Oncology 41: 140–145PubMedCrossRefGoogle Scholar
  17. Bonavida B, Braquet P (1988) Effect of platelet-activating factor (PAF) on monocyte activation and production of tumour necrosis factor ( TNF ). Prostaglandins 35: 802ACrossRefGoogle Scholar
  18. Bonjouklian R, Phillips ML, Kühler KM, Grindey GB, Poore GA, Chultz RM, Altom MG (1986) Studies of the antitumor activity of (2-alkoxyalkyl)- and (2-alkoxyalkeny)-phosphocholines. J Med Chem 29: 2472–2477PubMedCrossRefGoogle Scholar
  19. Braquet P, Rola-Pleszczynski M (1987) Platelet-activating factor and cellular immune re-sponses. Immunol Today 8: 345–352CrossRefGoogle Scholar
  20. Dulioust A, Vivier E, Salem P, Derynckz S, Benveniste J, Thomas Y (1987) Inhibition of human T4+ cell proliferation by PAF-acether (platelet-activating factor). Fed Proc 46: 2731Google Scholar
  21. Farkas G, Mandi Y, Koltai M, Braquet P (1988a) Graft protective effect of BN 52021, a specific PAF antagonist in an in vitro Langerhans islet-splenic lymphocyte model. In: Braquet P (ed) The ginkgolides: chemistry, pharmacology and clinical perspectives. Prous, Barcelona, pp 737–748Google Scholar
  22. Farkas G, Mandi Y, Belali I, Koltai M (1988b) The effect of platelet-activating factor (PAF) antagonists and somatostatin analogues on lymphocyte and natural killer ( NK) cell cytotoxicity. Prostaglandins 35: 804ACrossRefGoogle Scholar
  23. Fleer EAM, Unger C, Kim DJ, Eibl H (1987) Metabolism of ether lipids and analogs in neoplastic cells. Lipids 22: 856–861PubMedCrossRefGoogle Scholar
  24. Gebhardt PB, Bazan HEP, Braquet P, Bazan NG (1988) Platelet-activating factor suppresses cell mediated immune reactions in vivo. In: Braquet P (ed) Platelet-activating factor and cell immunology. Karger, Basel pp 99–107 (New trends in lipid mediators research, vol 1 )Google Scholar
  25. Helfman D, Barnes K, Rinkade J, Vogler W, Shojl M, Kuo J (1983) Phospholipid-sensitive Ca2+-dependent protein phosphorylation system in various types of leukemic cells from human patients and in human leukemic cell lines HL60 and K562, and its inhibition by alkyl-lysophospholipids. Cancer Res 43: 2955–2961PubMedGoogle Scholar
  26. Herrmann DBJ, Besenfelder E, Bicker U, Pahlke W, Böhm E (1987) Pharmacokinetics of the thioether phospholipid analogue BM 41.440 in rats. Lipids 22: 952–954PubMedCrossRefGoogle Scholar
  27. Hill EE, Lands WEM (1970) Phospholipid metabolism. In: Wakil SJ (ed) Lipid metabolism. Academic, New York, p 185 Hoffman DR, Stanley JD, Berchtold R, Snyder F (1984) Cytotoxicity of ether-linked phytanyl phospholipid analogs and related derivatives in human HL-60 leukemia cells and polymorphonuclear neutrophils. Res Commun Chem Pathol Pharmacol 44: 293Google Scholar
  28. Houlihan WJ, Lee ML, Munder PG, Nemecek GM, Handley DA (1987) Antitumor activity of SRI 62–834, a cyclic ether analog of ET-18-OCH3. Lipids 22: 884–890PubMedCrossRefGoogle Scholar
  29. Lee RC, Blank ML, Fitzgerald V, Snyder F (1981) Substrate specificity in the biocleavage of the O-alkyl bond: l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (a hypotensive and platelet-activating lipid) and its metabolites. Arch Biochem Biophys 208: 353–357PubMedCrossRefGoogle Scholar
  30. Leser HG, Barlin E, Weltzien HU, Gemsa D (1981) Die Wirkung von Lysolezithin-analoga ( LLA) auf den Arachidonsäuremetabolismus von Makrophagen. Verh Dtsch Ges Inn Med 87: 757–760Google Scholar
  31. Maistry L, Robinson KM, Evers P, Munder PG, Andreesen R (1980) Morphologie effects of an antitumor agent on human esophagal carcinoma cells in vitro. Scan Electron Micros 3: 109–114Google Scholar
  32. Malavasi F, Tetta C, Funaro A, Bellone G, Ferrero E, Franzone AC, Dellabona P, Rusci R, Matera L, Camussi G, Caligaris-Cappio F (1986) Fc receptor triggering induces expression of surface activation antigens and release of platelet-activating factor in large granular lymphocytes. Proc Natl Acad Sci USA 83: 2443–2447PubMedCrossRefGoogle Scholar
  33. Mandi Y, Farkas G, Koltai M, Braquet P, Beladi L (1988) The effect of BN 52021, a PAF- acether antagonist, on natural killer activity. In: Braquet P (ed) Platelet-activating factor and cell immunology. Basel, Karger, pp 76–88 (New trends in lipid mediators research, vol 1 )Google Scholar
  34. Modollel M, Andreesen R, Pahlke W, Brugger U, Munder PG (1979) Disturbance of phospholipid metabolism during the selective destruction of tumor cells induced by alkyl- lysophospholipids. Cancer Res 39: 4681–4686Google Scholar
  35. Munder PG, Modolell M, Ferber E, Fischer H (1966) Phospholipide in quarzgeschädigten Makrophagen. Biochem 344: 310Google Scholar
  36. Munder PG, Ferber E, Modolell M, Fischer H (1969) The influence of various adjuvants on the metabolism of phospholipids in macrophages. Int Arch Allergy 36: 117PubMedCrossRefGoogle Scholar
  37. Munder PG, Weltzien HU, Modolell M (1976) Lysolecithin analogs: a new class of immunopotentiators. In: Miescher PA (ed) VII. international symposium on immunopathology. Schwabe, Basel, pp 411–424Google Scholar
  38. Munder PG, Modolell M, Andreesen R, Weltzien HU, Westphal O (1979) Lysophosphatidylcholine (lysolecithin) and its synthetic analogues, immune modulating and other biologic effects. Springer Semin Immunopathol 2: 187–203CrossRefGoogle Scholar
  39. Munder PG, Modolell M, Bausert W, Oettgen HF, Westphal O (1981) Alkyl-lysophospholipids in cancer therapy. In: Hersh EM (ed) Augmenting agents in cancer therapy. Raven, New York, pp 411–458Google Scholar
  40. Pignol B, Henane S, Mencia-Huerta JM, Braquet P, Rola-Pleszczynski M (1987a) Platelet- activating factor (PAF-acether) inhibits interleukin 2 (IL2) production and proliferation of human lymphocytes. Australia 10th international congress of pharmacology, Sydney, 3–5 September 1987Google Scholar
  41. Pignol B, Henane S, Mencia-Huerta JM, Rola-Pleszczynski M, Braquet P (1987b) Effect of PAF-acether (platelet-activating factor) and its specific antagonist, BN 52021, on interleukin 1 (IL 1) synthesis and release by rat monocytes. Prostaglandins 33: 931–939CrossRefGoogle Scholar
  42. Pignol B, Henane S, Sorlin B, Rola-Pleszczynski M, Mencia-Huerta JM, Braquet P (1988a) Effect of long-term in vivo treatment with platelet-activating factor on interleukin 1 and interleukin 2 production by rat splenocytes. In: Braquet P (ed) Platelet- activating factor and cell immunology. Karger, Basel, pp 38–43 (New trends in lipid mediators research, vol 1 )Google Scholar
  43. Pignol B, Henane S, Pirotzky E, Mencia-Huerta JM, Braquet P (1988b) Potentiation of immunosuppressive action of cyclosporine by platelet-activating factor antagonists: an aproach of the mechanism of action of these drugs in graft rejection. Transplant Proc 20: 259–265Google Scholar
  44. Record M, Wagner M, Snyder F (1986) A kinetic study of the uptake and subcellular distribution of an antitumor PAF-analog ([3H]alkyl-2-methoxy-GPC) in HL-60 cells (ab-stract). In: Second international conference on platelet-activating factor and structurally related alkyl ether lipids. Gatlinburg, Tennessee, 26–29 October 1986, p 52Google Scholar
  45. Rola-Pleszczynski M, Pignol B, Pouliot C, Braquet P (1987a) Inhibition of human lymphocyte proliferation and interleukin 2 production by platelet-activating factor (PAF- acether): reversal by a specific antagonist, BN 52021. Biochem Biophys Res Commun 142: 754–760PubMedCrossRefGoogle Scholar
  46. Rola-Pleszczynski M, Pouliot C, Pignol B, Braquet P (1987b) Platelet-activating factor induces human suppressor cell activity. Fed Proc 46: 743Google Scholar
  47. Runge MH, Andreesen R, Pfleiderer A, Munder PG (1980) Destruction of human solid tumors by alkyl-lysophospholipids. J Natl Cancer Inst 64:1301–1306Google Scholar
  48. Snyder F, Wood R (1969) Alkyl and alkyl-l-enyl ethers of glycerol in lipids from normal and neoplastic human tissues. Cancer Res 29: 251–257PubMedGoogle Scholar
  49. Spence AM, Coates PW (1981) Scanning and transmission electron microscopy of cloned rat astrocytoma cells treated with dibutyryl cyclic AMP in vitro. J Cancer Res Clin Oncol 100: 51–58PubMedCrossRefGoogle Scholar
  50. Storme G, Berdel WE, Blitterswije WJ von, Bruyneel EA, De Bruyne GK, Mareel MM (1985) Anti-invasive effect of racemic-l-octadecyl-2-methoxy-glycero-3-phosphocho-line and other lysophospholipid analogs on M04 mouse fibrosarcoma cells in vitro. Cancer Res 45: 351–357PubMedGoogle Scholar
  51. Tidwell T, Guzman G, Volgler WR (1981) The effects of alkyllysophospholipids on leukemic cell lines. I. Differential action on two human leukemic cell lines, HL 60 and K 562. Blood 57: 794–797PubMedGoogle Scholar
  52. Weltzien HU, Westphal O (1967) Synthesen von Cholinphosphatiden. IV. O-methylierte und O-acetylierte Lysolecithine. Justus Liebigs Ann Chem 709: 240–243PubMedCrossRefGoogle Scholar
  53. Winslow DP, Roscoe JP, Rowles PM (1978) Changes in surface morphology associated with ethylnitrosurea-induced malignant transformation of cultured rat brain cells studied by scanning electron microscopy. Br J Exp Pathol 59: 530–539PubMedGoogle Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1989

Authors and Affiliations

  • P. Braquet
  • D. Hosford
  • M. Braquet

There are no affiliations available

Personalised recommendations