Skip to main content

Control of Acute-Phase Protein Production

  • Conference paper
Immune Consequences of Trauma, Shock, and Sepsis

Abstract

Injury induces characteristic alterations in the circulating levels of specific plasma proteins, referred to as the acute-phase proteins. Their major known functions are to serve as antiproteases, transport proteins, and opsonins. The acute-phase proteins, synthesized primarily in the liver, have been the focus of considerable study, since their altered levels presumably contribute to an improved ability of the host to survive injury. When interpreting the significance of the acute-phase response, it should not be forgotten that these proteins may represent only a few of the proteins synthesized in the liver whose synthesis changes following injury. The acute- phase protein profile may thus give an incomplete picture of the adaptive processes that occur (consider intracellular “stress proteins” and extracellular non-plasma proteins). However, the classic acute-phase proteins do give an indication of the extent of the body’s response to injury, and they have the clinical advantage of being easy to sample and assay.

Supported in part by NIH grants GM36258 and GM00511

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer J, Weber W, Tran-Thi T-A, Northoff G-H, Decker K, Gerok W, Heinrich PC (1985) Murine interleukin 1 stimulates alpha-2-macroglobulin synthesis in rat hepatocyte primary cultures. FEBS 190: 271–274

    Article  CAS  Google Scholar 

  • Bauer J, Tran-Thi T-A, Northoff H, Hirsch F, Schlayer H-J, Gerok W, Heinrich PC (1986) The acute-phase induction of alpha-2-macroglobulin in rat hepatocyte primary cultures: action of a hepatocyte-stimulating factor, triiodothyronine and dexamethasone. Eur J Cell Biol 40: 86 - 93

    PubMed  CAS  Google Scholar 

  • Baumann H, Held WA (1981) Biosynthesis and hormone-regulated expression of secretory glycoproteins in rat liver and hepatoma cells. J Biol Chem 256: 10145–10155

    PubMed  CAS  Google Scholar 

  • Baumann H, Jahreis GP, Sauder DN, Koj A (1984) Human keratinocytes and monocytes release factors which regulate the synthesis of major acute phase plasma proteins in hepatic cell from man, rat, and mouse. J Biol Chem 259: 7331–7342

    PubMed  CAS  Google Scholar 

  • Baumann H, Hill RE, Sauder DN, Jahreis GP (1986) Regulation of major acute-phase plasma proteins by hepatocyte-stimulating factors of human squamous carcinoma cell. J Cell Biol 102: 370–383

    Article  PubMed  CAS  Google Scholar 

  • Besedovsky H, del Rey A, Sorkin E, Dinarello CA (1986) Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233: 652–654

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Krochin N, Milsark IW, Luedke C, Cerami A (1986) Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science 232: 977–980

    Article  PubMed  CAS  Google Scholar 

  • Darlington GJ, Wilson DR, Lachman LB (1986) Monocyte-conditioned medium, interleukin-1, and tumor necrosis factor stimulate the acute phase response in human hepatoma cells in vitro. J Cell Biol 103: 787–793

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA, Cannon JG, Wolff SM, Bernheim HA, Beutler B, Cerami A, Figari IS, Palladino MA Jr, O’Connor JV (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med 163: 1433–1450

    Article  PubMed  CAS  Google Scholar 

  • Fuller GM, Otto JM, Woloski BM, McGary CT, Adams MA (1985) The effects of hepatocyte stimulating factor on fibrinogen biosynthesis in hepatocyte monolayers. J Cell Biol 101: 1481–1486

    Article  PubMed  CAS  Google Scholar 

  • Fuller GM, Bunzel RJ, Woloski BM, Nham S-U (1987) Isolation of hepatocyte stimulating factor from human monocytes. Biochem Biophys Res Commun 144: 1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Glibetic MD, Baumann H (1986) Influence of chronic inflammation on the level of mRNA for acute-phase reactants in the mouse liver. J Immunol 137: 1616–1622

    PubMed  CAS  Google Scholar 

  • Hayashida K, Okubo H, Noguchi M, Yoshida H, Kangawa K, Matsuo H, Sakaki Y (1985) Molecular cloning of DNA complementary to rat alpha-2 macroglobulin mRNA. J Biol Chem 260: 14224–14229

    PubMed  CAS  Google Scholar 

  • Kushner I, Gewurz H, Benson MD (1981) C-reactive protein and the acute-phase response. J Lab Clin Med 97: 739–749

    PubMed  CAS  Google Scholar 

  • Lanser ME, Saba TM, Scovill WA (1980) Opsonic glycoprotein (plasma fibronectin) levels after thermal injury. Ann Surg 188: 521–529

    Google Scholar 

  • Le PT, Mortensen RF (1984) Mouse hepatocyte synthesis and induction of the acute phase reactant: serum amyloid P-component. In Vitro Cell Devel Biol 20: 505–511

    Google Scholar 

  • Mortensen RF, Sarlo K, Le PT (1984) Monokine-induced hepatocyte synthesis of acute-phase reactants in mice. Lymphokine Res 3: 17–22

    PubMed  CAS  Google Scholar 

  • Nawroth PP, Bank I, Handley D, Cassimeris J, Chess L, Stern D (1986) Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J Exp Med 163: 1363–1375

    Article  PubMed  CAS  Google Scholar 

  • Nedwin GE, Svedersky LP, Bringman TS, Palladino MA Jr, Goeddel DV (1985) Effect of interleukin 2, interferon-gamma, and mitogens on the production of tumor necrosis factors alpha and beta. J Immunol 135: 2492–2497

    PubMed  CAS  Google Scholar 

  • Nimmer D, Bergtrom G, Hirano H, Amrani DL (1987) Regulation of plasma fibronectin biosynthesis by glucocorticoids in chick hepatocyte cultures. J Biol Chem 262: 10369–10375

    PubMed  CAS  Google Scholar 

  • Northemann W, Heisig M, Kunz D, Heinrich PC (1985) Molecular cloning of cDNA sequences for rat alpha-2-macroglobulin and measurement of its transcription during experimental inflammation. J Biol Chem 260: 6200–6205

    PubMed  CAS  Google Scholar 

  • Otto JM, Grenett HE, Fuller GM (1987) The coordinated regulation of fibrinogen gene transcription by hepatocyte-stimulating factor and dexamethasone. J Cell Biol 105: 1067–1072

    Article  PubMed  CAS  Google Scholar 

  • Perlmutter DH, Dinarello CA, Punsal PI, Colten HR (1986) Cachectin/tumor necrosis factor regulates hepatic acute-phase gene expression. J Clin Invest 78: 1349–1354

    Article  PubMed  CAS  Google Scholar 

  • Perlmutter DH, Goldberger G, Dinarello CA, Mizel SB, Colten HR (1986) Regulation of class III major histocompatability complex gene products by interleukin-1. Science 232: 850–852

    Article  PubMed  CAS  Google Scholar 

  • Pick-Kober KH, Munker D, Gressner AM (1986) Fibronectin is synthesized as an acute phase reactant in rat hepatocytes. J Clin Chem Clin Biochem 24: 521–528

    PubMed  CAS  Google Scholar 

  • Ramadori G, Sipe JD, Dinarello CA, Mizel SB, Colten HR (1985) Pretranslational modulation of acute phase hepatic protein synthesis by murine recombinant interleukin 1 (IL-1) and purified human IL-1. J Exp Med 162: 930–942

    Article  PubMed  CAS  Google Scholar 

  • Ritchie DG, Fuller GM (1983) Hepatocyte-stimulating factor: a monocyte-derived acute-phase regulatory protein. Ann NY Acad Sci 408: 490–499

    Article  PubMed  CAS  Google Scholar 

  • Selinger MJ, McAdam KPWJ, Kaplan MM, Sipe JD, Vogel SN, Rosenstreich DL (1980) Monokine-induced synthesis of serum amyloid A protein by hepatocytes. Nature 285: 498–500

    Article  PubMed  CAS  Google Scholar 

  • Sganga G, Siegel JH, Brown G, Coleman WP, Wiles CI III, Beizberg H, Wedel S, Placko R (1985) Reprioritization of hepatic plasma protein release in trauma and sepsis. Arch Surg 120: 187–199

    Article  PubMed  CAS  Google Scholar 

  • Sztein MB, Luger TA, Oppenheim J J (1982) An epidermal cell-derived cytokine triggers the in vivo synthesis of serum amyloid a by hepatocytes. J Immunol 129: 87–90

    PubMed  CAS  Google Scholar 

  • Tamkun JW, Hynes RO (1983) Plasma fibronectin is synthesized and secreted by hepatocytes. J Biol Chem 258: 4641–4647

    PubMed  CAS  Google Scholar 

  • Williamson BD, Carswell EA, Rubin BY, Prendergast JS, Old LJ (1983) Human tumor necrosis factor produced by human b-cell lines: synergistic cyktotoxic interaction with human interferon. Proc Natl Acad Sci USA 80: 5397–5401

    Article  PubMed  CAS  Google Scholar 

  • Woloski BMRNJ, Gospodarek E, Jamieson JC (1985) Studies on monokines as mediators of the acute phase response: effects on sialytransferase, albumin, alpha-1-acid glycoprotein and beta-Af-acetylhexosaminidase. Biochem Biophys Res Commun 130: 30–36

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Brown, G.E., Lanser, M.E. (1989). Control of Acute-Phase Protein Production. In: Faist, E., Ninnemann, J.L., Green, D.R. (eds) Immune Consequences of Trauma, Shock, and Sepsis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73468-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73468-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73470-0

  • Online ISBN: 978-3-642-73468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics