Aromatic heterocyclics — production and uses

  • Heinz-Gerhard Franck
  • Jürgen Walter Stadelhofer

Abstract

The industrial chemistry of the heterocyclic aromatics is extraordinarily diverse. A large number of mono- and polynuclear heterocyclics (vide infra) is present in coal tar and can be recovered from this source. Synthetic means of production, principally from petroleum-derived feedstocks have been added to the coal-derived raw materials since the fifties.

Keywords

Ranitidine Papaverine Methyl Ethyl Ketone Clotrimazole Cyclopentadiene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Adey, K. A.: Vinylverbindungen; In: Ullmanns Enzykl. Tech. Chem, 4. Aufl, 23,612 (1983)Google Scholar
  2. 2.
    Aiba, S, Tsunekawa, H, Imanaka, T.: New Approach to Tryptophan Production by Escherichia coli: Genetic Manipulation of Composite Plasmids in Vitro; Appl. Environm. Microbiol, 43, 289 (1982)Google Scholar
  3. 3.
    Bang, W.-G, Behrendt, U, Lang, S, Wagner, F.: Continuous Production of L-Tryptophan from Indole and L-Serine by Immobilized Escherichia Coli Cells; Biotech. Bioeng, 25, 1013 (1983)CrossRefGoogle Scholar
  4. 4.
    Beschke, H, Friedrich, H.: Acrolein in der Gasphasensynthese von Pyridinderivaten; Chem.-Zeitung, 101, 377 (1977)Google Scholar
  5. 5.
    Beschke, H, Friedrich, H, Schaefer, H, Schreyer, G.: Nicotinsäureamid aus β-Picolin; Chem.-Zeitung, 101, 384 (1977)Google Scholar
  6. 6.
    Beschke, H, Kleemann, A, Clauss, W, Kurze, W, Mathes, K, Habersang, S.: Pyridin und Pyridin-Derivate; In: Ullmanns Enzykl. Tech. Chem, 4. Aufl, 19, 591 (1980)Google Scholar
  7. 7.
    Bhattacharya, R.N, Roy, M.B, Baneijee, S.N, Nandi, G.C.: Recovery, Purification and Utilisation of Pyridine Bases from Coke Oven By-Products; URJA, 11, Nr.4, 215 (1982)Google Scholar
  8. 8.
    Buchholz, B.: Thiophene and Thiophene Derivatives; In: Kirk-Othmer, Encycl. Chem. Tech, 3. Ed, 22, 965 (1983)Google Scholar
  9. 9.
    Burakevich, J.V.: Cyanuric and Isocyanuric Acids; In: Kirk-Othmer, Encycl. Chem. Tech,Ed, 7; 397 (1979)Google Scholar
  10. 10.
    Collin, G.: Carbazol; In: Ullmanns Enzykl. Tech. Chem, 4. Aufl, 9,120 (1975)Google Scholar
  11. 11.
    Collin, G.: Chinolin; In: Ullmanns Enzykl. Tech. Chem, 4. Aufl, 9, 311 (1975)Google Scholar
  12. 12.
    Collin, G, Kleffner, H. W.: Thiophen und Benzothiophen; In: Ullmanns Enzykl. Tech. Chem, 4 Aufl, 23, 217 (1983)Google Scholar
  13. 13.
    Goe, G.L.: Pyridine and Pyridine Derivatives; In: Kirk-Othmer, Encycl. Chem. Tech, 3.Ed, 19, 454 (1982)Google Scholar
  14. 14.
    Härtner, H.: Vitamin (Thiamin); In: Ullmanns Enzykl. Tech. Chem, 4. Aufl, 23, 656 (1983)Google Scholar
  15. 15.
    Kleemann, A, Leuchtenberger, W, Hoppe, B, Tanner, H.: Amino Acids; In: Ullmann’s Enzycl. Ind. Chem, 5. Ed, A2, 57(1985)Google Scholar
  16. 16.
    Kriebitzsch, N, Klenk, H.: Cyanuric Acid and Cyanuric Chloride; In: Ullmann’s Enzycl. Ind. Chem, 5. Ed, A8, 191 (1987)Google Scholar
  17. 17.
    Kusunoki, Y, Okazaki, H.: Make pyridines direct; Hydrocarb. Proc,53, Nr. 11,129 (1974)Google Scholar
  18. 18.
    Mensch, F.: Hydrodealkylierung von Pyridinbasen bei Normaldruck; Erdöl, Kohle, Erdgas, Petrochem, 22, 67 (1969)Google Scholar
  19. 19.
    Nenz, A, Pieroni, M.: Commercial Synthetic Pyridine Bases; Hydrocarb. Proc, 47, Nr. 11,139 (1968)Google Scholar
  20. 20.
    Nenz, A, Pieroni, M.: Commercial Synthetic Pyridine Bases; Hydrocarb. Proc, 47, Nr. 12,103 (1968)Google Scholar
  21. 21.
    Paustian, J.E, Puzio, J.F, Stavropoulos, N, Sze, M.C.: A lesson in flow sheet design: nicotinamide and acid; ChemTech, Nr.3,174 (1981)Google Scholar
  22. 22.
    Pollak, P, Romeder, G.: N-heterocycles provide performance options; Perform. Chem, 3, Nr. 1, 34 (1988)Google Scholar
  23. 23.
    Reitter, L. Lihotzky, R.: Melamin; In: Ullmanns Enzykl. Tech. Chem, 4. Aufl, 16, 503 (1978)Google Scholar
  24. 24.
    Rittner, S, Warning, K.: Herstellung von heteroaromatischen Zwischenprodukten; In: Win- nacker-Küchler, Chem. Technol, 4. Aufl., 6, Org. Technol. II, 281 (1982)Google Scholar
  25. 25.
    Skogman, G.S, Sjöström, J.-E.: Factors Affecting the Biosynthesis of L-Tryptophan by Genetically Modified Strains of Escherichia coli; J.Gen. Microbiol, 130, 3091 (1984)Google Scholar
  26. 26.
    Suter, Ch.: Vitamine; In: Ullmanns Enzykl. Tech. Chem, 4. Aufl., 23, 706 (1983)Google Scholar
  27. 27.
    Sze, M.C, Gelbein, A. P.: Make aromatic nitriles this way; Hydrocarb. Proc, 55, Nr.2, 103 (1976)Google Scholar
  28. 28.
    Takahashi, N.: Novel Route to Synthesis of Alkylpyridines; Chem. Econ. Eng. Rev, 7, Nr. 6, 34 (1975)Google Scholar
  29. 29.
    Terui, G.: Tryptophan; In: Yamada, K, Ed.: Microbial Prod. Amino Acids; 515, Kodansha, Tokyo (1972)Google Scholar
  30. 30.
    Uebel, H.-J, Moll, K.-K, Mühlstädt, M.: Untersuchungen zur Gewinnung von 3-Methyl- pyridin; Chem. Tech. (Leipzig), 22, Nr. 12, 745 (1970)Google Scholar
  31. 31.
    Ujimaru, T, Kakimoto, T, Chibata, I.: L-Tryptophan Production by Achromobacter liquidum; Appl. Environm. Microbiol, 46,1 (1983)Google Scholar
  32. 32.
    Woodward, R.B, Doering, W.E.: The Total Synthesis of Quinine; J.Am. Chem. Soc,67, 860 (1945)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Heinz-Gerhard Franck
    • 1
  • Jürgen Walter Stadelhofer
    • 1
  1. 1.Rütgerswerke AGFrankfurt/M 11West Germany

Personalised recommendations