Opioid Peptides in Human Adrenal Medulla: Their Role in the Modulation of Catecholamine Secretion

  • E. Baldi
  • M. Maggi
  • M. L. de Feo
  • C. Pupilli
  • C. Selli
  • R. Zimlichman
  • E. Forsberg
  • V. Carlà
  • M. Mannelli
Conference paper

Abstract

Large amounts of opioid peptides (OPs), particularly those deriving from proenkephalin A, have been demonstrated in adrenal medulla of several animal species (for review see Livett 1984) and in human pheochromocytoma tissue (Sullivan et al. 1978; Giraud et al. 1982; Yoshimasa et al. 1984). Their functional role in adrenal medulla or human pheochromocytoma is still unknown, although evidence is emerging that they might modulate some adrenomedullary functions such as the release of catecholamines (CAs) (Costa et al. 1981; Saiani and Guidotti 1982; Mannelli et al. 1983; Mannelli et al. 1984; Bouloux et al. 1984).

Keywords

Placebo HPLC Glutathione Ethylene Glycol Trypsin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldi E, Spillantini MG, Cosenza-Biagioli E, Mainardi P, Cianciulli D, Carbone C, Panero C (1986) Met-enkephalin-like immunoreactivity (ME-LI) and enkephalinase activity (EKA) in cord blood and newborns in the first hours of life. Biol Res Pregnancy Perinatol 7 (2): 84–88PubMedGoogle Scholar
  2. Banerjee DK, Ornberg RL, Youdim MBH, Heldman E, Pollard HB (1985) Endothelial cells from bovine adrenal medulla develop capillary-like growth patterns in culture. Proc Natl Acad Sci USA 82: 4702–4706PubMedCrossRefGoogle Scholar
  3. Bouloux PMG, Grossman A, Lytras M, Besser GM (1985) Evidence for the participation of endogenous opioids in the sympathoadrenal response to hypoglycaemia in man. Clin Endocrinol (Oxf) 22: 49–56CrossRefGoogle Scholar
  4. Castanas E, Giraud P, Audiger Y, Drissi R, Boudouresque F, Conte-Devolx B, Oliver C (1983) Opiate binding spectrum on bovine adrenal medullas and six human pheochromocytomas. Life Sci 33 (Suppl 1): 295–298PubMedCrossRefGoogle Scholar
  5. Costa E, Guidotti A, Hanbauer I, Hexum T, Saiani L, Stine S, Yang HYT (1981) Regulation of acetylcholine receptors by endogenous cotransmitters: studies of adrenal medulla. Fred Proc 40: 160–165Google Scholar
  6. Giraud P, Castanas E, Oliver C, Conte-Devolx B, Boudouresque F, Toquet H, Orlando M, Jaquet P, Eiden L, Cesselin F, Gunz G, Trigano M (1982) Enkephalins in human pheochromocytoma. Biosynthesis and secretion. Eur Hearth J 3 (Suppl C): 19–22Google Scholar
  7. Livett BC (1984) Adrenal medullary chromaffin cells in vitro. Physiol Rev 64 (4): 1103–1161PubMedGoogle Scholar
  8. Mannelli M, Maggi M, De Feo ML, Cuomo S, Forti G, Moroni F, Giusti G (1983) Naloxone administration releases catecholamines. New Engl J Med 308: 654–655PubMedCrossRefGoogle Scholar
  9. Mannelli M, Maggi M, De Feo ML, Cuomo S, Delitala G, Giusti G, Serio M (1984) Effect of naloxone on catecholamine plasma levels in adult men: a dose-response study. Acta Endocrinol (Copenh) 106: 357–361Google Scholar
  10. Munson PJ, Rodbard D (1980) Ligand: a versatile computerized approach for characterization of ligand-binding systems. Analyt Biochem 107: 220–239PubMedCrossRefGoogle Scholar
  11. Neri-Serneri GG, Masotti G, Gensini GF, Poggesi L, Abbate R, Mannelli M (1981) Prostacyclin and thromboxane A2 formation in response to adrenergic stimulation in humans: a mechanism for local control of vascular response to sympathetic activation? Cardiovasc Res 15: 287–291CrossRefGoogle Scholar
  12. Panerai AE, Martini A, De Rosa A, Sacerdote P, Fraioli F (1983) A HPLC/RIA coupled technique for neuropeptides: its application to plasma and cerebrospinal fluid samples. Giornale Ital Chimica Clinica S8: 39–47Google Scholar
  13. Pollard HB, Pazoles CJ, Creutz CE, Scott JH, Zinder O, Hotchkiss A (1984) An osmotic mechanism for exocytosis from dissociated chromaffin cells. J Biol Chem 259: 1114–1121PubMedGoogle Scholar
  14. Saiani L, Guidotti A (1982) Opiate receptor-mediated inhibition of catecholamine release in primary cultures of bovine adrenal chromaffin cells. J Neurochem 39: 1669–1676PubMedCrossRefGoogle Scholar
  15. Sullivan SN, Bloom SR, Polak JM (1978) Enkephalin in peripheral neuroendocrine tumors. Lancet 1: 986–987PubMedCrossRefGoogle Scholar
  16. Yoshimasa T, Nakao K, Li S, Ikeda Y, Suda M, Sakamoto M, Imura H (1983) Plasma methionine-enkephalin and leucine-enkephalin in normal subjects and patients with pheochromocytoma. J Clin Endocrinol Metab 57: 706–721PubMedCrossRefGoogle Scholar
  17. Yoshimasa T, Nakao K, Sakamoto M, Suda M, Morii N, Ikeda Y, Ishihero T, Manno M, Homada S, Shimbo S, Mori T, Yoshimi T, Matsukura S, Imura H (1984) Demonstration and characterization of immunoreactive methionine-enkephalin, leucine-enkephalin, methionine-enkephalin-arg6- gly7-leu8 and methionine-enkephalin-arg6-phe7 in human pheochromocytoma. Acta Endocrinol 107: 261–267PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • E. Baldi
    • 1
  • M. Maggi
    • 1
  • M. L. de Feo
    • 1
  • C. Pupilli
    • 1
  • C. Selli
    • 1
    • 2
  • R. Zimlichman
    • 1
    • 4
  • E. Forsberg
    • 1
    • 5
  • V. Carlà
    • 1
    • 3
  • M. Mannelli
    • 1
  1. 1.Dept. of Clinical Physiopathology, Endocrinology UnitUniversity of FlorenceItaly
  2. 2.Dept. of UrologyUniversity of FlorenceItaly
  3. 3.Dept. of PharmacologyUniversity of FlorenceItaly
  4. 4.Dept. of MedicineSoroka Medical CenterBeer ShevaIsrael
  5. 5.NIDDKNIHBethesdaUSA

Personalised recommendations