Skip to main content

Detection of 4-Hydroxynonenal and Other Lipid Peroxidation Products in the Liver of Allyl Alcohol-Intoxicated Mice

  • Chapter
Book cover Eicosanoids, Lipid Peroxidation and Cancer

Abstract

Allyl alcohol has long been known to produce periportal necrosis of the liver in rats and mice (Miessner 1891; Piazza 1915). Also it is known that allyl alcohol is metabolized by the cytosolic enzyme alcohol dehydrogenase to acrolein (Rees and Tarlow 1967; Serafini-Cessi 1972). The latter is considered as one of the most important toxic metabolites responsible for the damage induced by allyl alcohol in liver and other tissues. Acrolein is in fact the most toxic member of the class of 2-alkenals (Beauchamp et al. 1985; Schauenstein et al. 1977), α-β unsaturated aldehydes which also include crotonaldehyde, pentenal, hexenal and so on. Acrolein is a powerful electrophile which reacts even spontaneously with nucleophiles such as sulphydryl groups (Esterbauer et al. 1975). The reaction is markedly accelerated by the activity of GSH-transferases. Cellular GSH is primarily involved in the reaction and the result is a dramatic loss of GSH stores (Hanson and Anders 1978; Zitting and Heinonen 1980; Dawson et al. 1984; Ohno et al. 1985; Jaeschke et al. 1987). The covalent binding of allyl alcohol metabolites to liver cells has been demonstrated with various techniques (Reid 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beauchamp RO Jr, Andjelkovich DA, Kligerman AD, Morgan KT, d’A. Heck H (1985) A critical review of the literature on acrolein toxicity. CRC Crit Rev Toxicol 14:309–380

    Article  CAS  Google Scholar 

  • Benedetti A, Comporti M, Esterbauer H (1980) Indentification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim Biophys Acta 620:281–296

    Article  PubMed  CAS  Google Scholar 

  • Benedetti A, Casini AF, Ferrali M, Fulceri R, Comporti M (1981) Cytotoxic effects of carbonyl compounds (4-hydroxyalkenals) originating from the peroxidation of microsomal lipids. In: Slater TF, Garner A (eds) Recent advances in lipid peroxidation and tissue injury. Brunei, Uxbridge, pp 56-85

    Google Scholar 

  • Benedetti A, Comporti M, Fulceri R, Esterbauer H (1984a) Cytotoxic aldehydes originating from the peroxidation of liver microsomal lipids. Identification of 4,5-dihydroxydecenal. Biochim Biophys Acta 792:172–181

    Article  PubMed  CAS  Google Scholar 

  • Benedetti A, Fulceri R, Comporti M (1984b) Inhibition of calcium sequestration activity of liver microsomes by 4-hydroxynonenal originating from the peroxidation of liver microsomal lipids. Biochim Biophys Acta 793:489–493

    Article  PubMed  CAS  Google Scholar 

  • Benedetti A, Pompella A, Fulceri R, Romani A, Comporti M (1986) Detection of 4-hydroxynonenal and other lipid peroxidation products in the liver of bromobenzene-poisoned mice. Biochim Biophys Acta 876:658–666

    Article  PubMed  CAS  Google Scholar 

  • Bielawski J, Lehninger AL (1966) Stoichiometric relationships in mitochondrial accumulation of calcium and phosphate supported by hydrolysis of adenosine triphosphate. J Biol Chem 241:4316–4322

    PubMed  CAS  Google Scholar 

  • Casini AF, Pompella A, Comporti M (1985) Liver glutathione depletion induced by bromobenzene, iodobenzene, and diethylmaleate poisoning and its relation to lipid peroxidation and necrosis. Am J Pathol 118:225–237

    PubMed  CAS  Google Scholar 

  • Casini AF, Maellaro E, Pompella A, Ferrali M, Comporti M (1988) Lipid peroxidation, protein thiols and calcium homeostasis in bromobenzene-induced liver damage. Biochem Pharmacol, (in press)

    Google Scholar 

  • Dawson JR, Norbeck K, Anundi I, Moldéus P (1984) The effectiveness of N-acetylcysteine in isolated hepatocytes, against the toxicity of paracetamol, acrolein, and paraquat. Arch Toxicol 55:11–15

    Article  PubMed  CAS  Google Scholar 

  • Dianzani MU (1982) Biochemical effects of saturated and unsaturated aldehydes. In: McBrien DCH, Slater TF (eds) Free radicals, lipid peroxidation and cancer. Academic, London, pp 129–158

    Google Scholar 

  • Esterbauer H (1982) Aldehydic products of lipid peroxidation. In: McBrien DCH, Slater TF (eds) Free radicals, lipid peroxidation and cancer. Academic, London, pp 101–128

    Google Scholar 

  • Esterbauer H (1985) Lipid peroxidation products: formation, chemical properties and biological activities. In: Poli G, Cheeseman KH, Dianzani MU, Slater TF (eds) Free radicals in liver injury. IRL, Oxford, pp 29–47

    Google Scholar 

  • Esterbauer H, Zollner H, Scholz N (1975) Reaction of glutathione with conjugated carbonyls. Z Naturforsch [c] 30:466–473

    CAS  Google Scholar 

  • Esterbauer H, Cheeseman KH, Dianzani MU, Poli G, Slater TF (1982) Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem J 208:129–140

    PubMed  CAS  Google Scholar 

  • Hanson SK, Anders MW (1978) Effect of diethyl maleate treatment, fasting, and time of administration on allyl alcohol hepatotoxicity. Toxicol Lett 1:301–305

    Article  CAS  Google Scholar 

  • Jaeschke H, Kleinwaechter C, Wendel A (1987) The role of acrolein in allyl alcohol-induced lipid peroxidation and liver cell damage in mice. Biochem Pharmacol 36:51–58

    Article  PubMed  CAS  Google Scholar 

  • Jocelyn PC, Kamminga A (1974) The non-protein thiol of rat liver mitochondria. Biochim Biophys Acta 343:356–362

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Meredith MJ, Reed DJ (1982) Status of the mitochondrial pool of glutathione in the isolated hepatocyte. J Biol Chem 257:3747–3753

    PubMed  CAS  Google Scholar 

  • Meredith NJ, Reed DJ (1983) Depletion in vitro of mitochondrial glutathione in rat hepatocytes and enhancement of lipid peroxidation by adriamycin and 1.3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Biochem Pharmacol 32:1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Miessner H (1891) Berlin Klin Wochenschr 28:819–822

    Google Scholar 

  • Ohno Y, Ormstad K, Ross D, Orrenius S (1985) Mechanism of allyl alcohol toxicity and protective effects of low-molecular-weight thiols studied with isolated rat hepatocytes. Toxicol Appl Pharmacol 78:169–179

    Article  PubMed  CAS  Google Scholar 

  • Piazza JG (1915) Zur Kenntnis der Wirkung der Allylverbindungen. Z Exp Pathol Ther 17:318–341

    Article  Google Scholar 

  • Pompella A, Maellaro E, Casini AF, Ferrali M, Ciccoli L, Comporti M (1987) Measurement of lipid peroxidation in vivo: a comparison of different procedures. Lipids 22:206–211

    Article  PubMed  CAS  Google Scholar 

  • Rees KR, Tarlow MJ (1967) The hepatotoxic action of allyl formate. Biochem J 104:757–761

    PubMed  CAS  Google Scholar 

  • Reid WD (1972) Mechanism of allyl alcohol-induced hepatic necrosis. Experientia 28:1058–1061

    Article  PubMed  CAS  Google Scholar 

  • Schauenstein E, Esterbauer H, Zollner H (eds) (1977) Aldehydes in biological systems. Pion, London, pp 25–102

    Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  • Serafini-Cessi F (1972) Conversion of allyl alcohol into acrolein by rat liver. Biochem J 128:1103–1107

    PubMed  CAS  Google Scholar 

  • Vignais PM, Vignais PV (1973) Fuscin, an inhibitor of mitochondrial SH-dependent transportlinked functions. Biochim Biophys Acta 325:357–374

    Article  PubMed  CAS  Google Scholar 

  • Wahlländer A, Soboll S, Sies H (1979) Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-S-transferases. FEBS Lett 97:138–140

    Article  PubMed  Google Scholar 

  • Witz G, Lawrie NJ, Zaccaria A, Ferran HE Jr, Goldstein BD (1986) The reaction of 2-thiobarbituric acid with biologically active alpha, beta-unsaturated aldehydes. J Free Radic Biol Med 2:33–39

    Article  PubMed  CAS  Google Scholar 

  • Zitting A, Heinonen T (1980) Decrease of reduced glutathione in isolated rat hepatocytes caused by acrolein, acrylonitrile, and the thermal degradation products of styrene copolymers. Toxicology 17:333–341

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pompella, A., Romani, A., Fulceri, R., Maellaro, E., Benedetti, A., Comporti, M. (1988). Detection of 4-Hydroxynonenal and Other Lipid Peroxidation Products in the Liver of Allyl Alcohol-Intoxicated Mice. In: Nigam, S.K., McBrien, D.C.H., Slater, T.F. (eds) Eicosanoids, Lipid Peroxidation and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73424-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73424-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18932-9

  • Online ISBN: 978-3-642-73424-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics