Advertisement

Thromboxane A2 and Prostacyclin in Tumorigenesis

  • V. Ullrich
  • M. Hecker
  • R. Nüsing
  • T. Rosenbach

Abstract

A tumour cell arises from a normal cell by changes in the processes of cell regulation, growth and differentiation. The complexity of such regulatory mechanisms, however, makes it difficult to understand the pathogenesis of malignant growth.

Keywords

Amelanotic Melanoma Amelanotic Melanoma Cell TXA2 Formation Precursor Arachidonic Acid Inhibit Protein Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunting S, Moncada S, Vane JR (1983) The prostacyclin-thromboxane A2 balance. Pathophysiological and therapeutic implications. Br Med Bull 39:271–276PubMedGoogle Scholar
  2. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor promoting phorbol esters. J Biol Chem 257:7847–7851PubMedGoogle Scholar
  3. Coleman RA, Humphrey PPA, Kennedy I, Lumley P (1984) Prostanoid receptors — the development of a working classification. Trends Pharmacol Sci 7:303–306CrossRefGoogle Scholar
  4. DeWitt DL, Smith WL (1983) Purification of prostacyclin synthase from bovine aorta by immunoaffinity chromatography. J Biol Chem 258:3285–3293PubMedGoogle Scholar
  5. Flower RJ, Blackwell GJ (1979) Antiinflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents Prostaglandin generation. Nature 278:456–459PubMedCrossRefGoogle Scholar
  6. Ham EA, Egan RW, Soderman DD, Gale PH, Kuehl FA Jr (1979) Peroxidase dependent deactivation of prostacyclin synthethase. J Biol Chem 254:2191–2194PubMedGoogle Scholar
  7. Haurand M, Ullrich V (1985) Isolation and purification of thromboxane synthase from human platelets as a cytochrome P-450 enzyme. J Biol Chem 260:15059–15067PubMedGoogle Scholar
  8. Hecker M, Haurand M, Ullrich V, Terao S (1986) Spectral studies on structure activity relationships of thromboxane synthase inhibitors. Eur J Biochem 157:217–223PubMedCrossRefGoogle Scholar
  9. Hecker M, Ullrich V, Fischer C, Meese CO (1987a) Identification of novel arachidonic acid metabolites formed by Prostaglandin H synthase. Eur J Biochem 169:113–123PubMedCrossRefGoogle Scholar
  10. Hecker M, Baader WJ, Weber P, Ullrich V (1987b) Thromboxane synthase catalyzes hydroxylations of Prostaglandin H2-analogs in the presence of iodosylbenzene. Eur J Biochem 169:563–569PubMedCrossRefGoogle Scholar
  11. Hecker M, Haurand M, Ullrich V, Diczfalusy U, Hammarström S (1987c) Products, kinetics, and substrate specifity of homogeneous thromboxane synthase from human platelets: Development of a novel enzyme assay. Arch Biochem Biophys 254:124–135PubMedCrossRefGoogle Scholar
  12. Honn KV, Meyer J (1981) Thromboxanes and prostacyclins: Positive and negative modulators of tumor growth. Biochem Biophys Res 102:1122–1129CrossRefGoogle Scholar
  13. Honn KV, Menter DG, Steinert BW, Taylor JD, Onoda JM, Sloane BF (1987) Analysis of platelet, tumor cell and endothelial cell interactions in vivo and in vitro. In: Garaci E, Paoletti R, Santoro G (eds) Prostaglandins and cancer research. Springer Berlin Heidelberg New York, pp 172–184CrossRefGoogle Scholar
  14. Marnett LJ (1985) Arachidonic acid metabolism and tumor initiation. In: Marnett LJ (ed) Arachidonic acid metabolism and tumor initiation. Nijhoff, Boston, pp 39–42CrossRefGoogle Scholar
  15. Marnett LJ, Tuttle MA (1980) Comparison of the mutagenicities of malondialdehyde and the side products formed during its chemical synthesis. Cancer Res 40:276–282PubMedGoogle Scholar
  16. Needleman P, Raz A, Minkes MS, Ferrendelli JA, Sprecher H (1979) Triene Prostaglandins: Prostacyclin and thromboxane biosynthesis and unique biological properties. Proc Natl Acad Sci USA 76:944–948PubMedCrossRefGoogle Scholar
  17. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB (1986) Arachidonic acid metabolism. Annu Rev Biochem 55:69–102PubMedCrossRefGoogle Scholar
  18. Shamberger RJ, Adreone TL, Willis CE (1974) Antioxidants and cancer. IV. Initiating activity of malondialdehyde as a carcinogen. HJNCI 53:1771–1774Google Scholar
  19. Siess W, Cuatrecasas P, Lapetina EG (1983) A role for cyclooxygenase products in the formation of phosphatidic acid in stimulated human platelets. Differential mechanisms of action of thrombin and collagen. J Biol Chem 258:4683–4686PubMedGoogle Scholar
  20. Ullrich V, Graf H (1984) Prostacyclin and thromboxane synthase as P-450 enzymes. Trends Pharmacol Sci 7:352–355CrossRefGoogle Scholar
  21. Ullrich V, Castle L, Weber P (1981) Spectral evidence for the cytochrome P450 nature of prostacyclin synthethase. Biochem Pharmacol 30:2033–2036PubMedCrossRefGoogle Scholar
  22. Violi F, Ghiselli A, Alessendri C, Iuliano L, Cordovar C, Balsano F (1985) Relationship between platelet cyclooxygenase pathway and plasma malondialdehyde-like material. Lipids 20:322–324PubMedCrossRefGoogle Scholar
  23. Weeks CE, Slaga TJ, Boutwell RK (1984) The role of polyamines in tumor promotion. In: Slaga TJ (ed) Tumor promotion and skin carcinogenesis. CRC Boca Raton, pp 127–143Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • V. Ullrich
    • 1
  • M. Hecker
    • 1
  • R. Nüsing
    • 1
  • T. Rosenbach
    • 1
  1. 1.Faculty of BiologyUniversity of KonstanzKonstanzGermany

Personalised recommendations