An Integrated Non-Monotonic Deduction and Reason Maintenance System

  • Michael Reinfrank
  • Hartmut Freitag
Conference paper
Part of the Informatik-Fachberichte book series (volume 162)

Abstract

KAPRI⋆⋆ uses rules of the form ifunlessthen … . For such a rule to be fired, its monotonie if-antecedents are required to match the current database, while none of its non-monotonic unless-antecedents does. The current state of a KAPRI-system is represented by a dependency network composed of assertions and corresponding justifications for believing in them in terms of belief respectively disbelief in other assertions. This network is maintained by a reason maintenance system, KL-DNMS⋆⋆, that revises the current belief status with respect to every modification due to the firing of a rule or to the addition/retraction of a basic fact.

Keywords

Income Editing Doyle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [AI-13-80]
    Bobrow, Daniel (edt.): Special Issue on Non-Monotonic Reasoning. ARTIFICIAL INTELLIGENCE 13 (1,2) (1980)Google Scholar
  2. [Charniak|Sussman|Winograd-71]
    Charniak, Eugene; Sussman, Gerald; Winograd, Terry: MICRO-PLANNER Reference Manual. Memo 203A, MIT Al-Lab (Cambridge, December 1971 )Google Scholar
  3. [deKleer-84]
    deKleer, Johan: Choices without Backtracking. Proc. 4th NCAI, pp. 79–85 (Austin, 1984 )Google Scholar
  4. [deKleer-85a]
    deKleer, Johan: An Assumption-Based TMS. Research Report Draft, Xerox Pare (September, 1985 )Google Scholar
  5. [deKleer-85b]
    deKleer, Johan: Personal communication. (GWAI 85, Dassel, September 1985 )Google Scholar
  6. [deKleer|Doyle|Steele|Sussman-79]
    deKleer, Johan; Doyle, Jon; Steele, Guy; Sussman; Gerald: Explicit Control of Reasoning. In Winston; Brown (eds.): ARTIFICIAL INTELLIGENCE - AN MIT PERSPECTIVE, MIT Press (Cambridge, 1979 )Google Scholar
  7. [Doyle-79]
    Doyle, Jon: A Truth Maintenance System. Al 12, pp. 231–272 (1979)MathSciNetGoogle Scholar
  8. [Doyle-83]
    Doyle, Jon: Some Theories of Reasoned Assumptions. CMU-CS-83-125, CMU (Pittsburgh, May 1983 )Google Scholar
  9. [Doyle|McDermott-80]
    Doyle, Jon; McDermott, Drew: Non-Monotonic Logic I. Al 13 (1,2), pp. 41–72 (April 1980)MathSciNetMATHGoogle Scholar
  10. [Fikes|Nilsson-71]
    Fikes, Richard E.; Nilsson, N.J.: STRIPS - A New Approach to the Application of Theorem Proving to Problem Solving. Al 2 (3,4), pp.189–208(1971)Google Scholar
  11. [Forgy-81]
    Forgy, Charles L.: The OPS5 user’s manual. CMU-CDS-81-135, CMU (Pittsburgh, 1981 )Google Scholar
  12. [Forgy-82]
    Forgy, Charles L.: RETE: A Fast Algorithm for the Many Pattern/Many Object Match Problem. Artificial Intelligence 19, pp.17–38(1982)Google Scholar
  13. [Freitag|Klug|Reinfrank-85]
    Freitag, Hartmut; Klug, Juergen; Reinfrank, Michael:KL-DNMS, ein System zur Verwaltung nicht-monotoner Abhaengigkeitsnetze. Interner Bericht, FB Informatik, Univ. Kaiserslautern (Kaiserslautern, 1985 )Google Scholar
  14. [Goldstein|Roberts-77]
    Goldstein, Ira; Roberts, B.R.: The FRL Manual. TR 409, MIT AI-Lab, ( Cambridge, 1977 )Google Scholar
  15. [Goodwin-82]
    Goodwin, James: An Improved Algorithm for Non-Monotonic Dependency Net Update. LITH-MAT-R-82-23, Linkoeping University ( Linkoeping, August 1982 )Google Scholar
  16. [Goodwin-84]
    Goodwin, James: WATSON: A Dependency Directed Inference System. Proc. WS-NMR, pp. 103–114 ( New Paltz, October 1984 )Google Scholar
  17. [Hayes-71]
    Hayes, Patrick: The Frame Problem, and Related Problems on Artificial Intelligence. Memo AIM-153, Stanford Artificial Intelligence Project ( Stanford, November 1971 )Google Scholar
  18. [Hayes-Roth-85]
    Hayes-Roth, Frederick: Rule-Based Systems. CACM 28 (9), pp. 921–932, (September 1985)Google Scholar
  19. [KEE-84]
    The Knowledge Engineering Environment. Intellicorp, Menlo Park, CA (1984)Google Scholar
  20. [Moore-83]
    Moore, Robert C.: Semantical Considerations on Non-Monotonic Logic. TechNote 284, SRI (Menlo Park, 1983 )Google Scholar
  21. [Moore-84]
    Moore, Robert C.: Possible World Semantics for Autoepistemic Logic. Proc. WS-NMR, pp. 344-354 ( New Paltz, October 1984 )Google Scholar
  22. [Minsky-74]
    Minsky, Marvin: A Framework for Representing Knowledge. Memo 306, MIT Al-Lab (Cambridge, June 1974 )Google Scholar
  23. [Orejel-Opisso-84]
    Orejel-Opisso, Jorge L.: Story Understanding with WATSON, a Computer Program Modelling Natural Language Inferences Using Non-Monotonic Dependencies. Report T-146, Univ. of Illinois at Urbana-Champaign (Urbana, May 1984 )Google Scholar
  24. [Reinfrank-85]
    Reinfrank, Michael: An Introduction to Non-Monotonic Reasoning. MEMO SEKI-85-02, Univ. Kaiserslautern (Kaiserslautern, 1985 )Google Scholar
  25. [Reinfrank-87]
    Reinfrank, Michael: Admissible Extension Formalisms for a Rule-Based Non-Monotonic Inference System. Technical Report, Linkoeping University, in preparation.Google Scholar
  26. [Reinfrank et al -86]
    Reinfrank, Michael; Beetz, Michael; Freitag, Hartmut; Klug, Juergen: KAPRI - A Rule-Based Non-Monotonic Inference Engine with an Integrated Reason Maintenance System. SEKI-REPORT SR-86-03, Univ. Kaiserslautern (Kaiserslautern, March 1986 )Google Scholar
  27. [Reiter-80]
    Reiter, Raymond: A Logic for Default Reasoning. Al 13 (1,2), pp. 81–132, (April 1980)MathSciNetMATHGoogle Scholar
  28. [Sandewall-72]
    Sandewall, Erik: An Approach to the Frame Problem, and its Implementation. In Meitzer, B.; Michie, D. (eds.) MACHINE INTELLIGENCE 7, pp. 195-204(1972)Google Scholar
  29. [Sandewall-85]
    Sandewall, Erik: A Functional Approach to Non-Monotonic Logic. Proc. 9th IJCAI 85, pp. 100 - 106 (1985)Google Scholar
  30. [Stallman|Sussman-77]
    Stallman, Richard; Sussman, Gerald: Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis. Artificial Intelligence 9, pp. 135 - 196 (1977)MATHCrossRefGoogle Scholar
  31. [Williams-84]
    Williams, Chuck: ART, The Advanced Reasoning Tool: Conceptual Overview. Inference Corporation (Los Angeles, 1984 )Google Scholar
  32. [Winston-82]
    Winston, Patrick H.: Learning by Augmenting Rules and Accumulating Censors. Memo 678, MIT Al-Lab (Cambridge, May 1982, revised February 1984 )Google Scholar
  33. [Winograd-80]
    Winograd, Terry: Extended Inference Modes in Reasoning by Computer Systems. Al 13 (1,2), pp. 5–26 (April 1980)MathSciNetMATHGoogle Scholar
  34. [WSNMR-84]
    Proceedings of the Workshop on Non-Monotonic Reasoning (New Paltz, October 1984)Google Scholar
  35. [YES/MVS-Group-84]
    Ennis, H.L.; Griesmer, J.H.; Hong, S.J.; Karnaugh, M.; Kastner, J.K.; Klein, D.A.; Millikn, K.R.; Schor, M.I.; vanWoerkem, H.M.: YES/MVS: A Continous Real Time Expert System. Proc. 4th NCAI, pp. 130–136 (Austin, 1984 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Michael Reinfrank
    • 1
  • Hartmut Freitag
    • 2
  1. 1.Dept. of Computer and Information Science RKLLABLinkoeping UniversityLinkoepingSweden
  2. 2.ZT ZTI INF 312Siemens AGMuenchen 83Germany

Personalised recommendations