The Fate of Stable Pollutants — Heavy Metals and Organochlorines — in Marine Organisms

  • J. M. Bouquegneau
  • C. Joiris
Part of the Advances in Comparative and Environmental Physiology book series (COMPARATIVE, volume 2)


Ecotoxicology can be defined as the study of the contamination of ecosystems (i.e., input, concentration, distribution, and speciation of the pollutant in the ecosystem) by natural and artificial pollutants, their mechanisms of accumulation (i.e., uptake, elimination, and detoxification) and their effects on living organisms (see Ramade 1977; Ravera 1984; Bouquegneau et al. 1985 a).


Heavy Metal Marine Organism Mytilus Edulis Inorganic Mercury Direct Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abarnou A, Robineau D, Michel P (1986) Contamination par les organochlorés des dauphins de Commerson des îles Kerguelen. Oceanol Acta 9:19–29Google Scholar
  2. Augier H, Gilles G, Ramonda G (1984) L’herbier de Posidonia oceanica et la pollution par le mercure sur le littoral des Bouches-de-Rhone et du Var (France). Int Workshop Posidonia Oceanica beds. In: Boudouresque CF, Jeudy de Grissac A, Oliver J (eds), GIS Posidonie Pubi xxx 1. Fr, pp 399–406Google Scholar
  3. Bascom W (1981) The non-toxicity of metals in the sea. MTS J 17 (no l):59–66Google Scholar
  4. Bayne BL, Brown DA, Burns K, Dixon DR, Ivanovici A, Livingstone DR, Lowe DM, Moore MN, Stebbing ARD, Widdows J (1985) The effects of stress and pollution on marine animals. Praeger, New York, 384 ppGoogle Scholar
  5. Boon JP, Duinker JC (1985) Kinetics of individual polychlorinated biphenyl (PCB) components in juvenile sole (Solea solea) in relation to concentrations in water and to lipid metabolism under conditions of starvation. Aquat Toxicol 7:119–134Google Scholar
  6. Boudou A, Ribeyre F (1981) Comparative study of the trophic transfer of two mercury compounds – HgCl2 and CH3HgCl – between Chlorella vulgaris and Daphnia magna. Influence of temperature. Bull Environ Contam Toxicol 27:624–629PubMedGoogle Scholar
  7. Bouquegneau JM (1975) L’accumulation du mercure et ses effets physiologiques chez Anguilla anguilla et Myoxocephalus scorpius. Doct Thesis, Univ Liège, BelgiumGoogle Scholar
  8. Bouquegneau JM (1979) Evidence for the protective effect of metallothioneins against inorganic mercury injuries to fish. Bull Environ Contam Toxicol 23:218–219PubMedGoogle Scholar
  9. Bouquegneau JM (1980) Chemical pollutants in the terrestrial environment. In: Gilles R (ed) Animals and environmental fitness, vol 1. Invited lectures. Pergamon Press, Oxford New York, pp 303–314Google Scholar
  10. Bouquegneau JM, Martoja M (1982) La teneur en cuivre et son degré de complexation chez quatre gastéropodes marins. Données sur le cadmium et le zinc. Oceanol Acta 5 (2):219–228Google Scholar
  11. Bouquegneau JM, Martoja M (1987) Seasonal variation ot the cadmium content of Murex trunculus in a non-cadmium polluted environment. Bull Environm Contam Toxicol 39:69–73Google Scholar
  12. Bouquegneau JM, Noel-Lambot F (1977) L’accumulation du mercure à partir de l’eau et de la nourriture chez les poissons marins. Rev Int Oceanogr Med 48:107–116Google Scholar
  13. Bouquegneau J M, Gerday Ch, Disteche A (1975) Fish mercury binding thionein related to adaptation mechanisms. FEBS Lett 55:173–177PubMedGoogle Scholar
  14. Bouquegneau J M, Noel-Lambot F, Disteche A (1976) Le problème de l’intoxication directe et indirecte par les métaux lourds. In: Nihoul JCJ, Disteche A (eds) Contamination des produits de la mer. Programme Natl Rech Dev. Environnement Eeu-Proj Mer Serv Premier Ministre, Program Politique Sci, Bruxelles pp 266–292Google Scholar
  15. Bouquegneau JM, Noel-Lambot F, Disteche A (1979) Fate of heavy metals in experimental aquatic food chains: uptake and release of mercury and cadmium by some marine organisms; role of metallothioneins. ICES – CM 1979/E: 58. Mar Environ Qual CommGoogle Scholar
  16. Bouquegneau JM, Noel-Lambot F, Verthe C, Disteche A (1982a) The accumulation of heavy metals in marine organisms. ICES – CM 1982/E:41. Mar Environ Qual CommGoogle Scholar
  17. Bouquegneau JM, Radoux D, Bay D (1982b) Mise en évidence de l’existence d’un transporteur de mercure au niveau de l’épithélium branchial de Serranus cabrilla. Bull Soc R Sci Liege 11–12; 384–386Google Scholar
  18. Bouquegneau JM, Martoja M, Truchet M (1984) Heavy metal storage in marine animals under various environmental conditions. In: Bolis L, Zadunaisky J, Gilles R (eds) Toxins, drugs and pollutants in marine animals. Springer, Berlin Heidelberg New York Tokyo, pp 147–160Google Scholar
  19. Bouquegneau JM, Joiris C, Delbeke K (1985a) Marine ecotoxicology: field and laboratory approaches. In: Grieken R van, Wollast R (eds) Progress in Belgian oceanographic research. Univ Antwerp, Antwerpen, Wilrijk, Belgium, pp 368–379Google Scholar
  20. Bouquegneau JM, Verthe C, Moureau Z, Mania B, Baelen J van, Ben D van der, Cogneau M, Vandecasteele CM (1985b) Accumulation of technetium by four marine mollusks and transfer to a predatory fish. In: Grieken R van, Wollast R (eds) Progress in Belgian oceanographic research. Univ Antwerp, Antwerpen, Wilrijk, Belgium, pp 380–392Google Scholar
  21. Bryan GW (1971) The effects of heavy metals (other than mercury) on marine and estuarine organisms. Proc R Soc London Ser B 177:389–410Google Scholar
  22. Bryan GW (1979) Bioaccumulation of marine pollutants. Philos Trans R Soc London Ser B 286:483–505Google Scholar
  23. Bryan GW, Hummerstone LG (1973) Adaptation of the polychaete Nereis diversicolor to estuarine sediments containing high concentrations of zinc and cadmium. J Mar Biol Assoc UK 53:839–857Google Scholar
  24. Cain DJ, Luoma SN (1986) Effect of seasonally changing tissue weight on trace metal concentrations in the bivalve Macoma balthica in San Francisco Bay. Mar Ecol Prog Ser 28:209–217Google Scholar
  25. Carpene E, George SG (1981) Absorption of cadmium by gills of Mytilus edulis (L.). Mol Phys 1:23–34Google Scholar
  26. Coombs TL (1980) Heavy metal pollutants in the aquatic environment. In: Gilles R (ed) Animals and environmental fitness. Pergamon Press, Oxford New York, pp 283–302Google Scholar
  27. Cossa D (1976) Sorption du cadmium par une population de la diatomée Phaeodactylum tricornutum en culture. Mar Biol 34:163–167Google Scholar
  28. Cossa D, Bourget E, Piuze J (1979) Sexual maturation as a source of variation in the relationship between cadmium concentration and body weight of Mytilus edulis L. Mar Pollut Bull 10:174–176Google Scholar
  29. Cristiani G, Gassend R, Augier H (1980) Etude de la contamination expérimentale de la phanérogame marine Posidonia oceanica (L.) Delile par les composés mercuriques. Partie 1. Modalités de la contamination par le chlorure mercurique. Environ Pollut 1:153–162Google Scholar
  30. Davies AG (1976) An assessment of the basis of mercury tolerance in Dunaliella tertiolecta. J Mar Biol Assoc UK 56:39–57Google Scholar
  31. Decadt G (1985) Contribution to the study of the biochemical cycle of mercury in the Southerm Bight of the North Sea. Doct Thes. Vrije Univ Brüssel, BelgiumGoogle Scholar
  32. Delbeke K, Joiris C (1985) Ecotoxicology of organochlorine residues in marine ecosystems. In: Grieken R van, Wollast R (eds) Progress in Belgian oceanographic research. Antwerp Univ, Antwerpen, pp 358–365Google Scholar
  33. Delbeke K, Joiris C (1986) Transfer and accumulation of organochlorine residues in the North Sea ecosystem. Mar Environ Res (submitted)Google Scholar
  34. Delbeke K, Joiris C (1987) Accumulation mechanisms and geographical distribution of PCBs in the North Sea. Int Conf Environ Protect North Sea, London, 24–27 March 1987, in pressGoogle Scholar
  35. Donkin P, Widdows J (1986) Scope for growth as a measurement of environmental pollution and its interpretation using structure-activity relationships. Chem Ind 21:732–737Google Scholar
  36. Duinker J (1986) The role of small, low density particles on the partition of selected PCB congeners between water and suspended matter (North Sea area). Neth J Sea Res 20:229–238Google Scholar
  37. Duncan DA, Klaverkamp JF (1983) Tolerance and resistance to cadmium in White Suckers (Catostomus commersoni) previously exposed to cadmium, mercury, zinc or selenium. Can J Fish Aquat Sci 40:128–138Google Scholar
  38. Duursma EK, Nieuwenhuize J, Liere JM van, Hillebrand MTJ (1986) Partitioning of organochlorines between water, particulate matter and some organisms in estuarine and marine systems of the Netherlands. Neth J Sea Res 20:239–251Google Scholar
  39. Eisler R, Gardner GR (1973) Acute toxicology to an estuarine teleost of mixtures of Cd, Cu and Zn salts. J Fish Biol 5:131–142Google Scholar
  40. Eiskens I, Goeyens L (1985) Transport, fate and recycling of heavy metals in sea-water ecosystems. In: Nürnberg HW (ed) Pollutants and their ecotoxicological significance. Wiley, New York, pp 239–253Google Scholar
  41. Essink K (1985) Monitoring of mercury pollution in Dutch coastal waters by means of the teleostean fish Zoarces viviparus. Neth J Sea Res 19:177–182Google Scholar
  42. Fischer H (1983) Shell weight as an independent variable in relation to cadmium content of molluscs. Mar Ecol Prog Ser 12:59–75Google Scholar
  43. Fischer H (1986) Influence of temperature, salinity and oxygen on the cadmium balance of mussels, Mytilus edulis. Mar Ecol Prog Ser 32:265–278Google Scholar
  44. Fisher NS, Bohe M, Teyssie J-L (1984) Accumulation and toxicity of Cd, Zn, Ag and Hg in four marine phytoplankters. Mar Ecol Prog Ser 18:191–200Google Scholar
  45. Funk AE, Day FA, Brady FO (1987) Displacement of zinc and copper from copper-induced metallothionein by cadmium and by mercury: in vivo and ex vivo studies. Comp Biochem Physiol 86C:1–6Google Scholar
  46. George SG (1983) Heavy metal detoxication in Mytilus kidney – an in vitro study of Cd- and Zn-binding to isolated tertiary lysosomes. Comp Biochem Physiol 76C:59–65Google Scholar
  47. George SG, Coombs TL (1977, Effects of high-stability iron complexes on the kinetics of iron accumulation and excretion in Mytilus edulis (L.). J Exp Mar Biol Ecol 28:133–140Google Scholar
  48. George SG, Carpene E, Coombs TL (1978) The effect of salinity on the uptake of cadmium by the common mussel, Mytilus edulis (L.). In: McLusky DS, Berry AJ (eds) Physiology and behaviour of marine organisms. Proc 12th Eur Symp Mar Biol, Stirling, Scotland, Sept 1977, Pergamon Press, Oxford New York, pp 189–193Google Scholar
  49. George SG, Coombs TL, Pirie BJS (1982) Characterization of metal-containing granules from the kidney of the common mussel, Mytilus edulis. Biochim Acta 716:61–71Google Scholar
  50. George SG, Pirie BJS, Calabrese A, Nelson DA (1986) Biochemical and ultrastructural observations of long-term silver accumulation in the mussel, Mytilus edulis. Mar Environ Res 18:255–265Google Scholar
  51. Geyer J, Freitas D, Korte F (1984) Polychlorinated biphenyls (PCBs) in the marine environment, particularly in the Mediterranean. Ecotoxicol Environ Safety 8:129–151PubMedGoogle Scholar
  52. Gray JS (1982) Effects of pollutants on marine ecosystems. Neth J Sea Res 16:424–443Google Scholar
  53. Goldberg ED, Bowen VT, Farrington FW, Harvey G, Martin JH, Parker PL, Risebrough RW, Robertsen W (1978) The mussel watch. Environ Cons 5:101–125Google Scholar
  54. Harding GC (1986) Organochlorine dynamics between Zooplankton and their environment, a reassessment. Mar Ecol Prog Ser 33:167–191Google Scholar
  55. Harding GC, Vass WTP, Drinkwater KF (1981) Importance of feeding, direct uptake from seawater, and transfer from generation to generation in the accumulation of an organochlorine (p,p’-DDT) by the marine planktonic copepod Calanus finmarchicus. Can J Fish Aquat Sci 38:101–119Google Scholar
  56. Holt D, Magos L, Webb M (1980) The interaction of cadmium-induced rat renal metallothionein with bivalent mercury in vitro. Chem Biol Interact 32:125–136PubMedGoogle Scholar
  57. Jarnelov A, Lann H (1971) Mercury accumulation in food chains. Oikos 22:403–406Google Scholar
  58. Jayasekara S, Brown DB, Sharma RP (1986) Tolerance to cadmium and cadmium-binding ligands in Great Salt Lake brine shrimp (Artemia salind). Ecotoxicol Environ Safety 11:23–30PubMedGoogle Scholar
  59. Joiris C, Delbeke K (1985) The contamination by organochlorine pesticides and PCBs of the Belgian raptors, their eggs and their food. In: Nürnberg HW (ed) Pollutants and their ecotoxicological significance. Wiley, New York, pp 403–414Google Scholar
  60. Joiris C, Billen G, Lancelot C, Daro MH, Mommaerts JP, Bertels A, Bossicart M, Nijs J, Hecq J-H (1982) A budget of carbon cycling in the Belgian coastal zone: relative roles of zooplankton, bacterioplanktion and benthos in the utilization of the primary production. Neth J Sea Res 16:260–275Google Scholar
  61. Jorgensen SE (1983) In: Application of ecological modelling in environmental management, part A, Elsevier, Amsterdam New York, pp 455–483Google Scholar
  62. Kantor YI (1984) Pseudohermaphroditism in Buccinum undatum (Gartropoda, Prosobranchia). Zool Zh 63:1256–1258 (in Russian)Google Scholar
  63. Karin M (1985) Metallothioneins: proteins in search of function. Cell 41:9–10PubMedGoogle Scholar
  64. Kayser H (1982) Cadmium effects in food chain experiments with marine planktion algae (Dinophyta) and benthic filter feeders (Tunicata). Neth J Sea Res 16:444–454Google Scholar
  65. Knauer GA, Martin JH (1973) Seasonal variations of cadmium, copper, manganese, lead and zinc in water and phytoplankton in Monterey Bay, California. Limnol Oceanogr 18:597–604Google Scholar
  66. Latouche YD, Mix MC (1981) Seasonal variation in soft tissue weights and trace metal burdens in the bay mussel, Mytilus edulis. Bull Environ Contam Toxicol 27:821–828PubMedGoogle Scholar
  67. Lock RAC, Overbeeke AP van (1981) Effects of mercuric chloride and methylmercuric chloride on mucus secretion in rainbow trout, Salmo gairdneri Richardson. Comp Biochem Physiol 69C:67–73Google Scholar
  68. Luoma SN, Cain DJ (1979) Fluctuations of copper, zinc and silver in tellenid clams as related to freshwater discharge in South San Francisco Bay. In: San Francisco Bay: the urbanized estuary. Pac Div, AAAS PublGoogle Scholar
  69. Luten JB, Bouquet W, Burggraaf MM, Rauchbaar AB, Rus J (1986a) Trace metals in mussels (Mytilus edulis) from the Waddenzee, coastal North Sea and the estuaries of Ems, western and eastern Scheldt. Bull Environ Contam Toxicol 36:770–777PubMedGoogle Scholar
  70. Luten JB, Bouquet W, Burggraaf MM, Rus J (1986b) Accumulation, elimination and speciation of cadmium and zinc in mussels, Mytilus edulis, in the natural environment. Bull Environ Contam Toxicol 37:579–586PubMedGoogle Scholar
  71. Martoja M, Martoja R (1984) La bioaccumulation de métaux, processus physiologique normal et conséquence de la pollution. Courr CNRS 54:32–37Google Scholar
  72. Martoja M, Truchet M (1983) Données analytiques sur les concrétions du tissu conjonctif de quelques gastéropodes d’eau douce. Malacologia 23:333–349Google Scholar
  73. Martoja M, Tan Tue VU, Elkaim B (1980) Bioaccumulation du cuivre chez Littorina littorea (L.) (Gastéropode prosobranche): signification physiologique et écologique. J Exp Mar Biol Ecol 43:251–270Google Scholar
  74. Martoja M, Truchet M, Bouquegneau JM (1984) Accumulation naturelle du cadmium chez Murex trunculus et Murex brandaris (Prosobranches Néogastropodes): localisation histologique. CR Acad Sci 298 (16):461–466Google Scholar
  75. Martoja M, Bouquegneau JM, Truchet M, Martoja R (1985) Recherche de l’argent chez quelques mollusques marins, dulcicoles et terrestres. Formes chimiques et localisation histologique. Vie Milieu 35 (1):1–13Google Scholar
  76. Martoja R, Orcel L, Truchet M (1984) Accumulation de métaux et de metalloïdes dans différents viscères de poissons (foie, rate, rein). Ann Inst Oceanogr Paris 60(2): 115–127Google Scholar
  77. Mason AZ, Simkiss K (1983) Interactions between metals and their distribution in tissues of Littorina littorea (L.) collected from clean and polluted sites. J Mar Biol Assoc UK 63:661–672Google Scholar
  78. McLean MW, Williamson FB (1977) Cadmium accumulation by marine red alga Porphyra umbilicalis. Physiol Plant 41:268–272Google Scholar
  79. Miller ER, Pondick JS (1984) Heavy metal levels in Nucella lapillus (Gastropoda: Prosobranchia) from sites with normal and penis-bearing females from New England. Bull Environ Contam Toxicol 33:612–620PubMedGoogle Scholar
  80. Moriarty F (1986) Measurement and prediction of bioaccumulation in aquatic organisms. Chem Ind 21:737–740Google Scholar
  81. Morris AW (1971) Trace metal variarions in sea water of the Menai Straits caused by a bloom of Phaeocystis. Nature (London) 233:427–428Google Scholar
  82. Nelson A, Donkin P (1985) Processes of bioaccumulation: the importance of chemical speciation. Mar Poll Bull 16:164–169Google Scholar
  83. Noel-Lambot F (1981) Presence in the intestinal lumen of marine fish of corpuscles with high cadmium-, zinc- and copper-binding capacity: a possible mechanism of heavy metal tolerance. Mar Ecol Prog Ser 4:175–181Google Scholar
  84. Noel-Lambot F, Bouquegneau JM, Frankenne F, Disteche A (1978) Le röle des metallothioneines dans le stockage des metaux lourds chez les animaux marins. Rev Int Oceanogr Med XLIX:13–20Google Scholar
  85. Noel-Lambot F, Bouquegneau JM, Disteche A (1980 a) Some mechanisms promoting or limiting bioaccumulation in marine organisms. ICES CM 1980/E:39. Mar Environ Qual CommGoogle Scholar
  86. Noel-Lambot F, Bouquegneau JM, Frankenne F, Disteche A (1980b) Cadmium, zinc and copper accumulation in limpets (Patella vulgata) from the Bristol Channel with special reference to metallothioneins. Mar Ecol Prog Ser 2:81–89Google Scholar
  87. Orren MJ, Eagle GA, Hennig HF-KO, Green A (1980) Variations in trace metal content of the mussel Choromytilus meridionalis (Kr.) with season and sex. Mar Pollut 1:253–257Google Scholar
  88. Overnell J (1983) Protein and oxalate in mineral granules from the kidney of Pecten maximus. J Exp Mar Biol Ecol 52:173–183Google Scholar
  89. Pentreath RJ (1975) Radiobiological studies with marine fish. In: Design of radiotracer experiments in marine biological systems. IAEA Tech Rep Ser no 167, Vienna, pp 137–170Google Scholar
  90. Phillips DJH (1976a) The common mussel Mytilus edulis as an indicator of pollution by zinc, cadmium, lead and copper. I. Effects of environmental variables on uptake of metals. Mar Biol 38:59–69Google Scholar
  91. Phillips DJH (1976b) The common mussel Mytilus edulis as an indicatior of pollution by zinc, cadmium, lead and copper. II. Relationships of metals in the mussel to those discharged by industry. Mar Biol 38:71–80Google Scholar
  92. Prosi F (1979) Heavy metals in aquatic organisms. In: Forstner U, Wittmann CTW (eds) Metal pollution in the aquatic environment. Springer Berlin Heidelberg New York, pp 271–323Google Scholar
  93. Radoux D, Bouquegneau JM (1979) The uptake of mercuric chloride from sea water by Serranus cabrilla. Bull Environ Contam Toxicol 22:771–778PubMedGoogle Scholar
  94. Ramade F (1977) Ecotoxicologie. Masson, Paris, 228 ppGoogle Scholar
  95. Ravera O (1984) Cadmium in freshwater ecosystems. Experientia 40:2–14Google Scholar
  96. Ray S (1984) Bioaccumulation of cadmium in marine organisms. Experientia 40:14–23Google Scholar
  97. Renfro WC, Fowler SW, Heyraud M, La Rosa J (1975) Relative importance of food and water in long-term zinc-65 accumulation by marine biota. J Fish Res Board Can 32:1339–1345Google Scholar
  98. Richardot M (1979) Calcium cells and groove cells in calcium metabolism in the freshwater limpet Ferrissia wautieri (Basommatophora Ancylidae). Malacol Rev 12:67–78Google Scholar
  99. Roch M, McCarter JA, Matheson AT, Clark MJR, Olafson RW (1982) Hepatic metallothionein in rainbow trouth (Salmo gairdneri) as an indicator of metal pollution in the Campbell River system. Can J Fish Aquat Sci 39:1569–1601Google Scholar
  100. Roesijadi G (1981) The significance of low molecular weight, metallothionein-like proteins in marine invertebrates: current status. Mar Environ Res 4:167–179Google Scholar
  101. Roesijadi G (1983) Enhanced tolerance in Mytilus edulis: influence of Cu, Zn and Cd pre-exposure and relationshop to metal-binding proteins. Abstr 5th Conf Eur Soc Comp Physiol Biochem, Sept 5–8, Taormina (Italy), pp 102–103Google Scholar
  102. Roesijadi G, Drum AS, Thomas JM, Fellingham GW (1982) Enhanced mercury tolerance in marine mussels and relationship to low molecular weight mercury binding protein. Mar Pollut Bull 13:250–253Google Scholar
  103. Sawhney BL, Frink CR, Glowa W (1981) PCBs in the Housatonic River: determination and distribution. J Environ Qual 10:444–448Google Scholar
  104. Schneider R (1981) Polychlorinated biphenyls (PCBs) in cod tissues from the western Baltic: significance of equilibrium partitioning and lipid composition in the bioaccumulation of lipophilic pollutants in gill-breathing animals. Meeresforschung 29:69–79Google Scholar
  105. Schultz-Baldes M, Lewin RA (1976) Lead uptake in two marine phytoplankton organisms. Biol Bull 150:118–127Google Scholar
  106. Sheehan PJ, Miller DR, Butler GC, Bourdeau P (eds) (1984) Effects of pollutants at the ecosystem level. SCOPE 22. Wiley, New York, 443 ppGoogle Scholar
  107. Sheehan P. Korte F, Klein W, Bourdeau P (eds) (1985) Appraisal of tests to predict the environmental behaviour of chemicals. SCOPE 25. Wiley, New York, 380 ppGoogle Scholar
  108. Simkiss K (1984) Effects of metal ions or respiratory structures. In: Bolis L, Zadunaisky J, Gilles R (eds) Toxins, drugs and pollutants in marine animals. Springer, Berlin Heidelberg New York Tokyo, pp 137–146Google Scholar
  109. Simkiss K, Taylor M (1981) Cellular mechanisms of metal ion detoxication and some new indices of pollution. Aquat Toxicol 1:279–290Google Scholar
  110. Sternlieb I, Goldfischer S (1976) In: Dingle JT, Dean RT (eds) Lysosomes in biology and pathology, vol 5. Elsevier North Holland, Amsterdam New York, pp 185–197Google Scholar
  111. Stone H, Overneil J (1985) Non-metallothionein cadmium binding proteins. Comp Biochem Physiol 80C:9–14Google Scholar
  112. Strong CR, Luoma SN (1981) Variations in the correlation of body size with concentrations of Cu and Ag in the bivalve Macoma balthica. Can J Fish Aquat Sci 38:1059–1064Google Scholar
  113. Spaargaren DH, Ceccaldi H J (1984) Some relations between the elementary chemical composition of marine organisms and that of sea water. Oceanol Acta 7:63–76Google Scholar
  114. Tohyama C, Himeno S-I, Watanabe C, Suzuki T, Morita M (1986) The relationship of the increased level of metallothionein with heavy metal levels in the tissue of the harbor seal (P-hoca vitulina). Ecotoxicol Environ Safety 12:85–94PubMedGoogle Scholar
  115. Vandorpe B, Smigielski F (1978) Présence de métaux dans les nodules et nécroses de poissons (morue et pleuronectides). Rev Int Oceanogr Med 49:29–35Google Scholar
  116. Veith GD, Macek KJ, Petrocelli SR, Carroll J (1980) In: Aquatic toxicology. Proc 3rd Annu Symp Aquat Toxicol, ASTM, Philadelphia, pp 116–129Google Scholar
  117. Vernberg WB, Coursey PJ de, O’Hara J (1974) Multiple environmental factor effects on physiology and behavior of the fiddler crab, Uca pugilator. In: Vernberg FJ, Vernberg WB (eds) Pollution and physiology of marine organisms. Academic Press, London New York, pp 381–425Google Scholar
  118. Vernberg WB, Coursey PJ de, Kelly M, Johns DM (1977) Effects of sublethal concentrations of Cd on adult Palaemonetes pugio under static and flow-through conditions. Bull Environ Contam Toxicol 17:16–24PubMedGoogle Scholar
  119. Verschuren K (1983) Handbook of environmental data on organic chemicals. Van Nostrand Reynold, New York, 1310 ppGoogle Scholar
  120. Viarango A, Palmero S, Zanicchi G, Capelli R, Vaissiere R, Orunesu M (1985) Role of metallothioneins in Cu and Cd accumulation and elimination in the gill and digestive gland cells of Mytilus galloprovincialis Lam. Mar Environ Res 16:23–36Google Scholar
  121. Weis JS, Kim J (1986) Specificity of acquired cadmium tolerance in the fiddler crab, Uca pugilator. Bull Environ Contam Toxicol 37:362–368PubMedGoogle Scholar
  122. Wright DA, Brewer CC (1979) Cd turnover in the shore crab Carcinus maenas. Mar Biol 50:151–156Google Scholar
  123. Young JS, Roesijadi G (1983) Reparatory adaptation to copper-induced injury and occurrence of a copper-binding protein in the polychaete Eudistylia vancouveri. Mar Pollut Bull 14:30–32Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. M. Bouquegneau
    • 1
  • C. Joiris
    • 2
  1. 1.Laboratory for OceanologyUniversity of LiègeLiègeBelgium
  2. 2.Laboratory for EcotoxicologyFree University of Brussels (V.U.B.)BrusselsBelgium

Personalised recommendations