Skip to main content

Special Developments and Trends

  • Chapter
  • 118 Accesses

Abstract

What can be termed the almost classical fields of immobilization of single enzymes on the one hand, and whole microorganisms on the other, have recently been extended in a variety of ways to include plant and animal cells and even cell organelles. Although it is too soon to say what significance such advances will have for science and production technology, a few of these special developments and trends will be discussed in the following sections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Andersson E, Johansson A-C, Hahn-Hägerdal B (1985) a-Amylase production in aqueous two-phase systems with Bacillus subtilis. Enzyme Microbial Technol 7: 333–338

    Article  CAS  Google Scholar 

  • Brink L E S, Tramper J (1985) Optimzation of organic solvent in multiphase biocatalysis. Biotechnol Bioeng 27: 1258–1269

    Article  PubMed  CAS  Google Scholar 

  • Brodelius P, Mosbach K (1982) Immobilized plant cells. In: Perlman D (ed) Advances in applied microbiology vol 28. Academic Press, New York, pp 1–26

    Google Scholar 

  • Brodelius P, Nilsson K (1983) Permeabilization of immobilized plant cells resulting in release of intracellularly stored products with preserved cell viability. Eur J Appl Microbiol Biotechnol 17: 275–280

    Article  CAS  Google Scholar 

  • Brouers M, Hall D O (1986) Ammonia and hydrogen production by immobilized cyano- bacteria. J Biotechnol 3: 307–311

    Article  CAS  Google Scholar 

  • Deshpande A, D’Souza S F, Nadkarni G B (1987) Coimmobilization of D-amino acid oxidase and catalase by entrapment of Trigonopsis variabilis in radiation polymerised Polyacrylamide beads. J Biosci 11 137–144

    Article  CAS  Google Scholar 

  • Felten P von, Zürrer H, Bachofen R (1985) Production of molecular hydrogen with immobilized cells of Rhodospirillum rubrum. Appl Microbiol Biotechnol 23: 15–20

    Article  Google Scholar 

  • Hahn-Hägerdal B (1983) Co-immobilization involving cells, organelles, and enzymes. In: Mattiasson B (ed) Immobilized cells and organelles, vol 2. CRC-Press, Boca Raton, pp 79–94

    Google Scholar 

  • Hartmeier W (1985) Immobilisierte Biokatalysatoren auf dem Weg zur zweiten Generation. Naturwissenschaften 72: 310–314

    Article  CAS  Google Scholar 

  • Hartmeier W (1985) Immobilized biocatalysts - from simple to complex systems. Trends Biotechnol 3: 149–153

    Article  CAS  Google Scholar 

  • Jeanfils J, Loudeche R (1986) Photoproduction of ammonia by immobilized hetero- cystic cyanobacteria - effect of nitrite and anaerobiosis. Biotechnol Lett 8: 265–270

    Article  CAS  Google Scholar 

  • Ku K, Kuo M J, Delente J, Wilde B S, Feder J (1981) Development of a hollowfibre system for large-scale culture of mammalian cells. Biotechnol Bioeng 23: 79–95

    Article  Google Scholar 

  • Lilly M D, Woodley J M (1985) Biocatalytic reactions involving water-insoluble organic compounds. Stud Org Chem 22: 179–192

    CAS  Google Scholar 

  • Lydersen B K, Pugh G G, Paris M S, Sharma B P, Noll L A (1985) Ceramic matrix for large scale animal cell culture. Bio/Technol 3: 63–67

    Article  Google Scholar 

  • Makryaleas K Scheper T, Schügerl K, Kula M-R (1985) Enzymkatalysierte Darstellung von L-Aminosäure mit kontinuierlicher Coenzym-Regenerierung mittels Flüssigmembran-Emulsionen. Chem Ing Tech 57: 362–363

    Article  CAS  Google Scholar 

  • Martinek K, Berezin I V, Khmelnitski Y L, Klyachko N L, Levashov A V (1987) Enzymes entrapped into reversed micelles of surfactants in organic solvents: Key trends in applied enzymalogy (biotechnology). Biocatalysis 1: 9–15

    Article  CAS  Google Scholar 

  • Mattiasson B (1983) Applications of aqueous two-phase systems in biotechnology. Trends Biotechnol 1: 16–20

    Article  CAS  Google Scholar 

  • Miyamaki O, Wingard L B jr, Brackin J S, Silver R S (1986) Formation of propylene oxide by Nocardia corallina immobilized in liquid paraffin. Biotechnol Bioeng 28: 343–348

    Article  Google Scholar 

  • Musgrave S C, Kerby N W, Codd G A, Stewart W D P (1982) Sustained ammonia production by immobilized filaments of nitrogen-fixing cyanobacterium Anabena 27893. Biotechnol Lett 4: 647–652

    Article  CAS  Google Scholar 

  • Nilsson K (1987) Methods for immobilizing animal cells. Trends Biotechnol 5: 7378

    Article  Google Scholar 

  • Nilsson K, Mosbach K (1984) Peptide synthesis in aqueous-organic solvent mixtures with a-chymotrypsin immobilized to tresyl chloride-activated agarose. Biotechnol Bioeng 26: 1146–1154

    Article  PubMed  CAS  Google Scholar 

  • Rosevear A, Lambe C A (1985) Immobilized plant cells. In: Fiechter A (ed) Advances in Biochemical Engineering vol 31. Springer, Berlin Heidelberg New York, pp 37–58

    Google Scholar 

  • Spier R E (1980) Recent developments in the large scale cultivation of animal cells in monolayers. Ins Fiechter A (ed) Advances in Biochemical Engineering vol 14. Springer, Berlin Heidelberg New York, pp 119–162

    Google Scholar 

  • Thomasset B, Barbotin J-N, Thomas D (1984) The effects of high concentrations of salts on photosynthetic electron transport of immobilized thylakoidss functional stability. Appl Microbiol Biotechnol 19: 387–392

    Article  CAS  Google Scholar 

  • Tschopp A, Cogoli A, Lewis M L, Morrison D R (1984) Bioprocessing in spaces human cells attach to beads in microgravity. J Biotechnol 1: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Verlaan P, Hulst A C, Tramper J, van’t Riet K, Luyben K C A M (1984) Immobilization of plant cells and some aspects of the application in an airlift loop reactor. In: 3rd Eur Congr Biotechnol. Verlag Chemie, Weinheim, pp 151–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartmeier, W. (1988). Special Developments and Trends. In: Immobilized Biocatalysts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73364-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73364-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18808-7

  • Online ISBN: 978-3-642-73364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics