Special Developments and Trends

  • Winfried Hartmeier

Abstract

What can be termed the almost classical fields of immobilization of single enzymes on the one hand, and whole microorganisms on the other, have recently been extended in a variety of ways to include plant and animal cells and even cell organelles. Although it is too soon to say what significance such advances will have for science and production technology, a few of these special developments and trends will be discussed in the following sections.

Keywords

Fermentation Interferon NADPH Fructose Alkaloid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Andersson E, Johansson A-C, Hahn-Hägerdal B (1985) a-Amylase production in aqueous two-phase systems with Bacillus subtilis. Enzyme Microbial Technol 7: 333–338CrossRefGoogle Scholar
  2. Brink L E S, Tramper J (1985) Optimzation of organic solvent in multiphase biocatalysis. Biotechnol Bioeng 27: 1258–1269PubMedCrossRefGoogle Scholar
  3. Brodelius P, Mosbach K (1982) Immobilized plant cells. In: Perlman D (ed) Advances in applied microbiology vol 28. Academic Press, New York, pp 1–26Google Scholar
  4. Brodelius P, Nilsson K (1983) Permeabilization of immobilized plant cells resulting in release of intracellularly stored products with preserved cell viability. Eur J Appl Microbiol Biotechnol 17: 275–280CrossRefGoogle Scholar
  5. Brouers M, Hall D O (1986) Ammonia and hydrogen production by immobilized cyano- bacteria. J Biotechnol 3: 307–311CrossRefGoogle Scholar
  6. Deshpande A, D’Souza S F, Nadkarni G B (1987) Coimmobilization of D-amino acid oxidase and catalase by entrapment of Trigonopsis variabilis in radiation polymerised Polyacrylamide beads. J Biosci 11 137–144CrossRefGoogle Scholar
  7. Felten P von, Zürrer H, Bachofen R (1985) Production of molecular hydrogen with immobilized cells of Rhodospirillum rubrum. Appl Microbiol Biotechnol 23: 15–20CrossRefGoogle Scholar
  8. Hahn-Hägerdal B (1983) Co-immobilization involving cells, organelles, and enzymes. In: Mattiasson B (ed) Immobilized cells and organelles, vol 2. CRC-Press, Boca Raton, pp 79–94Google Scholar
  9. Hartmeier W (1985) Immobilisierte Biokatalysatoren auf dem Weg zur zweiten Generation. Naturwissenschaften 72: 310–314CrossRefGoogle Scholar
  10. Hartmeier W (1985) Immobilized biocatalysts - from simple to complex systems. Trends Biotechnol 3: 149–153CrossRefGoogle Scholar
  11. Jeanfils J, Loudeche R (1986) Photoproduction of ammonia by immobilized hetero- cystic cyanobacteria - effect of nitrite and anaerobiosis. Biotechnol Lett 8: 265–270CrossRefGoogle Scholar
  12. Ku K, Kuo M J, Delente J, Wilde B S, Feder J (1981) Development of a hollowfibre system for large-scale culture of mammalian cells. Biotechnol Bioeng 23: 79–95CrossRefGoogle Scholar
  13. Lilly M D, Woodley J M (1985) Biocatalytic reactions involving water-insoluble organic compounds. Stud Org Chem 22: 179–192Google Scholar
  14. Lydersen B K, Pugh G G, Paris M S, Sharma B P, Noll L A (1985) Ceramic matrix for large scale animal cell culture. Bio/Technol 3: 63–67CrossRefGoogle Scholar
  15. Makryaleas K Scheper T, Schügerl K, Kula M-R (1985) Enzymkatalysierte Darstellung von L-Aminosäure mit kontinuierlicher Coenzym-Regenerierung mittels Flüssigmembran-Emulsionen. Chem Ing Tech 57: 362–363CrossRefGoogle Scholar
  16. Martinek K, Berezin I V, Khmelnitski Y L, Klyachko N L, Levashov A V (1987) Enzymes entrapped into reversed micelles of surfactants in organic solvents: Key trends in applied enzymalogy (biotechnology). Biocatalysis 1: 9–15CrossRefGoogle Scholar
  17. Mattiasson B (1983) Applications of aqueous two-phase systems in biotechnology. Trends Biotechnol 1: 16–20CrossRefGoogle Scholar
  18. Miyamaki O, Wingard L B jr, Brackin J S, Silver R S (1986) Formation of propylene oxide by Nocardia corallina immobilized in liquid paraffin. Biotechnol Bioeng 28: 343–348CrossRefGoogle Scholar
  19. Musgrave S C, Kerby N W, Codd G A, Stewart W D P (1982) Sustained ammonia production by immobilized filaments of nitrogen-fixing cyanobacterium Anabena 27893. Biotechnol Lett 4: 647–652CrossRefGoogle Scholar
  20. Nilsson K (1987) Methods for immobilizing animal cells. Trends Biotechnol 5: 7378CrossRefGoogle Scholar
  21. Nilsson K, Mosbach K (1984) Peptide synthesis in aqueous-organic solvent mixtures with a-chymotrypsin immobilized to tresyl chloride-activated agarose. Biotechnol Bioeng 26: 1146–1154PubMedCrossRefGoogle Scholar
  22. Rosevear A, Lambe C A (1985) Immobilized plant cells. In: Fiechter A (ed) Advances in Biochemical Engineering vol 31. Springer, Berlin Heidelberg New York, pp 37–58Google Scholar
  23. Spier R E (1980) Recent developments in the large scale cultivation of animal cells in monolayers. Ins Fiechter A (ed) Advances in Biochemical Engineering vol 14. Springer, Berlin Heidelberg New York, pp 119–162Google Scholar
  24. Thomasset B, Barbotin J-N, Thomas D (1984) The effects of high concentrations of salts on photosynthetic electron transport of immobilized thylakoidss functional stability. Appl Microbiol Biotechnol 19: 387–392CrossRefGoogle Scholar
  25. Tschopp A, Cogoli A, Lewis M L, Morrison D R (1984) Bioprocessing in spaces human cells attach to beads in microgravity. J Biotechnol 1: 287–293PubMedCrossRefGoogle Scholar
  26. Verlaan P, Hulst A C, Tramper J, van’t Riet K, Luyben K C A M (1984) Immobilization of plant cells and some aspects of the application in an airlift loop reactor. In: 3rd Eur Congr Biotechnol. Verlag Chemie, Weinheim, pp 151–154Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Winfried Hartmeier
    • 1
  1. 1.Department of Technical BiochemistryUniversity of HohenheimStuttgart 70Germany

Personalised recommendations