Skip to main content

Reactors for Immobilized Biocatalysts

  • Chapter
Immobilized Biocatalysts
  • 121 Accesses

Abstract

The effect of diffusional limitations on external mass transfer in connection with the use of immobilized biocatalysts has already been referred to in Sect. 3.6. External mass transfer is essential for the transport of the dissolved substances (substrate) to the immobilized biocatalysts. The further transport within the biocatalysts to the reaction site, which we call internal mass transport, cannot be directly influenced by the nature of the bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Adler I, Fiechter A (1983) Charakterisierung von Bioreaktoren mit biologischen Testsystemen. Swiss Biotech 1: 17–24

    Google Scholar 

  • Andrews G F, Przezdziecki J (1986) Design of fluidized-bed fermentors. Biotechnol Bioeng 28: 802–810

    Article  PubMed  CAS  Google Scholar 

  • Ching C B, Ho Y Y (1984) Flow dynamics of immobilized enzyme reactors. Appl Microbiol Biotechnol 20: 303–309

    Article  CAS  Google Scholar 

  • Chotani G K, Constantinides A (1984) Immobilized cell cross-flow reactor. Biotechnol Bioeng 26: 217–220

    Article  PubMed  CAS  Google Scholar 

  • Dale M C, Okos M R, Wankat P C (1985) An immobilized cell reactor with simultaneous product separation. II. Experimental reactor performance. Biotechnol Bioeng 27: 943–952

    Article  PubMed  CAS  Google Scholar 

  • Flaschel E, Raetz E, Renken A (1983) Development of a tubular recycle membrane reactor for continuous operation with soluble enzymes. In: Lafferty R M (ed) Enzyme technology. Springer, Berlin Heidelberg New York, pp 285–295

    Chapter  Google Scholar 

  • Goldstein L, Levy M (1983) Kinetics of multilayer immobilized enzyme-filter reactors: behavior of urease-filter reactors in different buffers. Biotechnol Bioeng 25: 1485–1499

    Article  PubMed  CAS  Google Scholar 

  • Guiot S R, Berg L van den (1985) Performance of an upflow anaerobic reactor combining a sludge blanket and a filter treating sugar waste. Biotechnol Bioeng 27: 800–806

    Article  PubMed  CAS  Google Scholar 

  • Hermanowicz S W, Ganczarczyk J J (1985) Mathematical modelling of biological packed and fluidized bed reactors. In: Joergensen S E, Gromiec M J (eds) Mathematical models in biological waste water treatment. Elsevier, Amsterdam, pp 473–524

    Google Scholar 

  • Kloosterman J, Lilly M D (1985) An airlift loop reactor for the transformation of steroids by immobilized cells. Biotechnol Lett 7: 25–30

    Article  CAS  Google Scholar 

  • Park T H, Kim I H (1985) Hollow-fibre fermenter using ultrafiltration. Appl Microbiol Biotechnol 22: 190–194

    Article  CAS  Google Scholar 

  • Park Y, Davies M E, Wallis D A (1985) Analysis of a continuous aerobic fixed-film bioreactor. II. Dynamic behavior. Biotechnol Bioeng 26: 468–476

    Article  Google Scholar 

  • Patmardhan V S, Karanth N G (1982) Film diffusional influences on the kinetic parameters in packed-bed immobilized enzyme reactors. Biotechnol Bioeng 26: 763–780

    Article  Google Scholar 

  • Shiotani T, Yamane T (1981) A horizontal packed-bed bioreactor to reduce CO2 gas holdup in the continuous production of ethanol by immobilized yeast cells. Eur J Appl Microbiol Biotechnol 13: 96–101

    Article  CAS  Google Scholar 

  • Wandrey C (1984) Bioreaktoren für den Einsatz von Enzymen. Forum Mikrobiol (Sonderh Biotechnol) 7: 33–39

    Google Scholar 

  • Yamane T, Shimizu S (1982) The minimum-sized ideal reactor for continuous alcohol fermentation using immobilized microorganisms. Biotechnol Bioeng 24: 2731–2737

    Article  PubMed  CAS  Google Scholar 

  • Zlokarnik M (1981) Verfahrenstechnische Grundlagen der Reaktorgestaltung. Acta Biotechnol 1: 311–325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartmeier, W. (1988). Reactors for Immobilized Biocatalysts. In: Immobilized Biocatalysts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73364-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73364-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18808-7

  • Online ISBN: 978-3-642-73364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics