Parathyroid Hormone, Carbonic Anhydrase and Calcium Homeostasis

  • P. Dietsch


Changes in the concentration of extracellular ionized calcium (Ca2+) regulate the secretion of parathyroid hormone (PTH) and calcitonin (CT) and vice versa in a very fast and effective way. Most of the biochemical reactions involved in these processes are still unknown. There is some knowledge about the way these hormones are synthesized and secreted (Mac Gregor and Cohn 1978), but it is still not known how the extracellular Ca2+ signal is recognized and how this event is then transformed into an intracelullar message that modulates hormone secretion. Undoubtedly, the osteoclast’s resorbing activity is enhanced by PTH (Gaillard et al. 1979), but it is still not clear, whether the osteoclast is a target cell for this hormone (Jilka 1986). Because of the lack of PTH receptors on the osteoclast surface this stimulation may be mediated through osteoblasts (Rodan and Martin 1981).


Parathyroid Hormone Carbonic Anhydrase Serum Calcium cAMP Dependent Protein Kinase Renal Tubular Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berliner, R.W., J. Kennedy and J. Orloff (1951): Relationship between acidification of the urin and potassium metabolism. Amer. J. Med. 2, 274.CrossRefGoogle Scholar
  2. Chase, L.R., G.D. Aurbach (1970): Activation of sceletal adenylcyclase by parathyroid hormone in vitro. Endocrinology 84, 761–768.CrossRefGoogle Scholar
  3. Gaillard, P.J., M.P.M. Herrmann-Erlee, J.W. Hekkelman, E.H. Burger and P.J Nijweide (1979): Basic Science and Pathology, Skeletal Tissue in Culture, Hormonal Regulation of Metabolism and Development. Clin. Orth. 42, 196–214.Google Scholar
  4. Gay, C.V. W.J. Mueller (1974): Carbonic anhydrase and osteoclasts: Localization by labeled inhibitor autoradiography. Science 183, 432–434.PubMedCrossRefGoogle Scholar
  5. Gay, C.V., M.B. Ito and H. Schraer (1982): Carbonic anhydrase activity in isolated osteoclasts. Calcif. Tissue Int. 34,Suppl.l,19.Google Scholar
  6. Janowitz, H.D., H. Colcher and F. Hollander (1952): Inhibition of gastric secretion of acids in dogs by carbonic anhydrase inhibitor: 2-acetyl- amino-1.3.4-thiodiazole-5-sulfonamide. Amer. J. Physiol. 171, 325–330.PubMedGoogle Scholar
  7. Jilka, R.L. (1986): Are osteoblastic cells required for the control of osteoclast activity by parathyroid hormone? Bone and Mineral 1, 261–266.Google Scholar
  8. Körber, F. and P. Siegmund (1965): Versuche über Stoffwechselvorgänge bei der Auflösung von Knochenmineral. Calcif. Tissue, Symp. Européen, Liège 31, 207–214.Google Scholar
  9. Malone, J.D., A.J. Kahn and S.L. Teitelbaum (1982): Dissociation of organic acid secretion from macrophage-mediated bone resorption. Biochem. Bio- phys. Res. Commun. 108, 468–473.CrossRefGoogle Scholar
  10. Maregor, R.R. and D.V. Cohn (1978): The intracellular pathway for parathormone biosynthesis and secretion. Clin. Orthop. Rel. Res. 137, 244–258.Google Scholar
  11. Martin, K.J., J.J. Freitag, M.B. Conrades, K.A. Hruska, S. Klahr and E. Slatopolsky (1978): Selective uptake of the synthetic amino terminal fragment of bovine parathyroid hormone by isolated perfused bone. J. Clin. Invest. 62, 256–261.PubMedCrossRefGoogle Scholar
  12. Narumi, S. and M. Kauno (1973): Effects of gastric acid stimulants and inhibitors on the activities of HC03-stimulated, Mg2+-dependent at Paseand carbonic anhydrase in rat gastric mucosa. Biochem. Biophys. Acta 311, 80–89.PubMedCrossRefGoogle Scholar
  13. Narumi, S. and E. Miyamoto (1974): Activation and phosphorylation of carbonic anhydrase by adenosine-3’.5’-monophosphate-dependent protein kinase. Biochim. Biophys. Acta 350, 215–224.PubMedGoogle Scholar
  14. Pochhammer, C., P. Dietsch and P.R. Siegmund (1979): Histochemical detection of carbonic anhydrase with dimethylaminonaphthalene-5-sulfonamide. J. Histochem. Cytochem. 27, 1103–1107.PubMedCrossRefGoogle Scholar
  15. Rodan, G.A. and T.J. Martin (1981): Role of Osteoclasts in Hormonal Control of Bone Resorption - A Hypothesis. Calcif. Tissue Int. 33, 349–351.PubMedCrossRefGoogle Scholar
  16. Siegmund, P. and H.J. Dulce (1960): Zur Biochemie der Knochenauflösung I. Einfluß des Carboanhydrase-Inhibitors 2-Acetamino-1.3.4-thiodiazolsul- fonamid-(5) (Diamox) auf den Calciumstoffwechsel von Legehennen. Hop- pe-Seyler’s Z. physiol. Chem. 300, 149–159.CrossRefGoogle Scholar
  17. Siegmund, P., F. Körber and P. Dietsch (1976): Praktikum der physiologi- sehen Chemie, p. 213–214. De Gruyter, Berlin - New York.Google Scholar
  18. Siegmund, P., A. Tüllmann and M. Holke (1974): The CycliMP-Mediated Action of Epinephrine on the Activity of Carbonic Anhydrase in Avian Erythrocytes. Horm. Metab. Res. 6, 158–161.PubMedCrossRefGoogle Scholar
  19. Sly, W.S., D. Hewett-Emmet, M.P. Whyte, Y.-S. Yu and R.E. Tashian (1983): Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc. Natl. Acad. Sci. USA 80, 2752–2756.PubMedCrossRefGoogle Scholar
  20. Väänänen, H.K. and E.K. Parvinen (1983): High active isoenzymes of carbonic anhydrase in rat calvaria osteoclasts. Histochem. 78, 481–485.CrossRefGoogle Scholar
  21. Waite, L.C., W.A. Volkert and A.D. Kenny (1970): Inhibition of bone resorption by acetazolamide in the rat. Endocrinology 87, 1129–1139.PubMedCrossRefGoogle Scholar
  22. Wilbur, K.M. and N.G. Anderson (1948): Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154.PubMedGoogle Scholar
  23. Wilhelm, G., T. Floren, C. Römer, E. Werner (1987): Relation between internal calcium turnover, serum calcium concentration and mineralization of bone: a comparative discussion. This book, p. 147.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • P. Dietsch

There are no affiliations available

Personalised recommendations