Indiffusion and Chemisorption of B, C, and N on GaAs and InP

  • M. Menon
  • R. E. Allen
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 11)


Recently we introduced a technique that permits -- for the first time --realistic simulations of atomic motion in systems with covalent or metallic bonding [1–7]. The essential idea is to compute the atomic forces directly from the electronic structure, using the Hellmann-Feynman theorem together with novel Green’s function techniques [2]. The results are found to be in quantitative agreement with the existing experimental measurements (and the best theoretical calculations) of surface relaxation [8,9], chemisorption bond lengths [10], chemisorption sites [11,12] phonon frequencies [13], and basic chemical tendencies [14]. The simulations of chemisorption for many chemical species on GaAs and InP have led to a number of interesting and unexpected observations [5–7].


Atomic Motion Metallic Bonding Surface Relaxation Large Atom Small Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Menon and R. E. Allen, Bull. Am. Phys. Soc. 30, 362 (1985).Google Scholar
  2. 2.
    R. E. Allen and M. Menon, Phys. Rev. B 33, 5611 (1986).CrossRefGoogle Scholar
  3. 3.
    M. Menon and R. E. Allen, Phys. Rev. B 33, 7099 (1986).CrossRefGoogle Scholar
  4. 4.
    O. F. Sankey and R. E. Allen, Phys. Rev. B 11, 7164 (1986).CrossRefGoogle Scholar
  5. 5.
    M. Menon and R. E. Allen, Superlattices and Microstructures (in press).Google Scholar
  6. 6.
    M. Menon and R. E. Allen, Solid State Commun. (in press).Google Scholar
  7. 7.
    M. Menon and R. E. Allen, to be published.Google Scholar
  8. 8.
    S. Y. Tong, A. R. Lubinsky, B. J. Mrstik, and M. A. van Hove, Phys. Rev. B 17, 3303 (1978).CrossRefGoogle Scholar
  9. 9.
    A. Kahn, E. So, P. Mark, and C. B. Duke, J. Vac. Sci. Technol. 12, 580 (1978).CrossRefGoogle Scholar
  10. 10.
    C. B. Duke, A. Paton, W. K. Ford, A. Kahn, and J. Carelli, Phys. Rev. B 26, 803 (1982).CrossRefGoogle Scholar
  11. 11.
    D. J. Chadi and R. Z. Bachrach, J. Vac. Sci. Technol. 16, 1159 (1979).CrossRefGoogle Scholar
  12. 12.
    J. Ihm and J. D. Joannopoulos, J. Vac. Sci. Technol. 21, 340 (1982).CrossRefGoogle Scholar
  13. 13.
    G. Dolling and J. L. T. Waugh, in Lattice Dynamics, edited by R. F. Wallis (Pergamon, Oxford, 1965).Google Scholar
  14. 14.
    J. R. Myron, J. Anderson, and G. J. Lapeyre, in Proceedings of the 17th International Conference on The Physics of Semiconductors, edited by J. D. Chadi and W. A. Harrison (Springer-Verlag, New York, 1985).Google Scholar
  15. 15.
    M. Menon and C. W. Myles, J. Phys. Chem. Solids (in press).Google Scholar
  16. 16.
    J. C. Tully, in Many-Body Phenomena at Surfaces, edited by D. Langreth and H. Suhl (Academic Press, London, 1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. Menon
    • 1
  • R. E. Allen
    • 1
  1. 1.Center for Theoretical Physics, Department of PhysicsTexas A&M UniversityCollege StationUSA

Personalised recommendations