Advertisement

Understanding the Si 7x 7: Energetics, Topology, and Stress

  • D. Vanderbilt
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 11)

Abstract

Several experiments [1-4] strongly support the “dimer adatom stacking-fault” (OAS) model of TAKAYANAGI et al.[1] as being the correct structural model for the Si 7×7. Attention is now shifting towards attempts to understand the reasons for the formation of this structure. McRAE [5] has suggested that relief of a strong compressive surface stress [6] is the driving force for the reconstruction. QIAN and CHAOI [7] and NORTHRUP [8] have emohasized danglinqbond reduction and adatom formation as the driving mechanisms. A successful theory should discriminate among these possibilities, identify the factors which determine the DAS periodicity, elucidate the relationship of the Si 7×7 to the Gé c2×8, and explain experiments showing a strain-dependence of the surface reconstruction pattern [9-13].

Keywords

Stack Fault Energy Dangling Bond Strain Derivative Keating Model Corner Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Takayanagi, Y. Tanishiro, M. Takahashi, S. Takahashi: J. Vac. Sci. Technol. A3, 1502 (1985); Surf. Sci. 164,367 (1985)Google Scholar
  2. 2.
    R. S. Becker, J. A. Golovchenko, E. G. McRae, B. S. Swartzentruber: Phys. Rev. Lett. 55, 2028 (1985)CrossRefGoogle Scholar
  3. 3.
    R. M. Tromp, E. J. van Loenen: Surf. Sci. 155, 441 (1985)CrossRefGoogle Scholar
  4. 4.
    R.J. Hamers, R. M. Tromp, J. E. Demuth: Phys. Rev. Lett. 56, 1972 (1986)CrossRefGoogle Scholar
  5. 5.
    E. G. McRae: Phys. Rev. B28, 2305 (1983); Surf. Sci. 147,663 (1984); Surf. Sci. 163, L766 (1985)Google Scholar
  6. 6.
    E. Pearson, T. Takai, T. Halicioglu, W. A. Tiller: J. Cryst. Growth 70, 33 (1984)CrossRefGoogle Scholar
  7. 7.
    G.-X. Qian, D. J. Chadi: J. Vac. Sci. Technol.B4,1079 (1986); Phys. Rev. B35, 1288(1987)Google Scholar
  8. 8.
    J. E. Northrup: Phys. Rev. Lett. 57, 154 (1986); and in Proceedings of the 18th International Conference on the Physics of Semiconductors, edited by O. Engström (World Scientific, Singapore, 1987), p. 61CrossRefGoogle Scholar
  9. 9.
    H.-J. Gossman, J. C. Bean, L. C. Feldman, E. G. McRae, J. K. Robinson: Phys. Rev. Lett. 55, 1106 (1985)CrossRefGoogle Scholar
  10. 10.
    A. Ourmazd, D.W. Taylor, J. Bevk, B. A. Davidson, L. C. Feldman, J. P. Mannaerts: Phys. Rev. Lett. 21 1332 (1986)CrossRefGoogle Scholar
  11. 11.
    T. Ichikawa, S. Ino: Surf. Sci. 105., 395 (1981); and 136, 267 (1984)CrossRefGoogle Scholar
  12. 12.
    H.-J. Gossman, L. C. Feldman: Surf. Sci. 155, 413 (1985)CrossRefGoogle Scholar
  13. 13.
    K. Nakagawa, P. M. J. Marée, J. F. van der Veen: In Proceedings of the 18th International Conference on the Physics of Semiconductors, edited by O. Engström (World Scientific, Singapore, 1987), p. 93Google Scholar
  14. 14.
    D. Vanderbilt: submitted to Phys. Rev. BGoogle Scholar
  15. 15.
    Precisely speaking, the parameters d, c, and Δf are to be defined by the large-n limit of (1)Google Scholar
  16. 16.
    K. Takayanagi, Y. Tanishiro: Phys. Rev. B34, 1034 (1986)Google Scholar
  17. 17.
    D. Vanderbilt: in preparationGoogle Scholar
  18. 18.
    I. K. Robinson, W.K. Waskiewicz, P. H. Fuoss, L. J. Norton: to be publishedGoogle Scholar
  19. 19.
    R. S. Becker, J. A. Golovchenko, B. S. Swartzentruber: Phys. Rev. Lett. 54, 2678 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • D. Vanderbilt
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations