Understanding the Si 7x 7: Energetics, Topology, and Stress

  • D. Vanderbilt
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 11)

Abstract

Several experiments [1-4] strongly support the “dimer adatom stacking-fault” (OAS) model of TAKAYANAGI et al.[1] as being the correct structural model for the Si 7×7. Attention is now shifting towards attempts to understand the reasons for the formation of this structure. McRAE [5] has suggested that relief of a strong compressive surface stress [6] is the driving force for the reconstruction. QIAN and CHAOI [7] and NORTHRUP [8] have emohasized danglinqbond reduction and adatom formation as the driving mechanisms. A successful theory should discriminate among these possibilities, identify the factors which determine the DAS periodicity, elucidate the relationship of the Si 7×7 to the Gé c2×8, and explain experiments showing a strain-dependence of the surface reconstruction pattern [9-13].

Keywords

Topo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Takayanagi, Y. Tanishiro, M. Takahashi, S. Takahashi: J. Vac. Sci. Technol. A3, 1502 (1985); Surf. Sci. 164,367 (1985)Google Scholar
  2. 2.
    R. S. Becker, J. A. Golovchenko, E. G. McRae, B. S. Swartzentruber: Phys. Rev. Lett. 55, 2028 (1985)CrossRefGoogle Scholar
  3. 3.
    R. M. Tromp, E. J. van Loenen: Surf. Sci. 155, 441 (1985)CrossRefGoogle Scholar
  4. 4.
    R.J. Hamers, R. M. Tromp, J. E. Demuth: Phys. Rev. Lett. 56, 1972 (1986)CrossRefGoogle Scholar
  5. 5.
    E. G. McRae: Phys. Rev. B28, 2305 (1983); Surf. Sci. 147,663 (1984); Surf. Sci. 163, L766 (1985)Google Scholar
  6. 6.
    E. Pearson, T. Takai, T. Halicioglu, W. A. Tiller: J. Cryst. Growth 70, 33 (1984)CrossRefGoogle Scholar
  7. 7.
    G.-X. Qian, D. J. Chadi: J. Vac. Sci. Technol.B4,1079 (1986); Phys. Rev. B35, 1288(1987)Google Scholar
  8. 8.
    J. E. Northrup: Phys. Rev. Lett. 57, 154 (1986); and in Proceedings of the 18th International Conference on the Physics of Semiconductors, edited by O. Engström (World Scientific, Singapore, 1987), p. 61CrossRefGoogle Scholar
  9. 9.
    H.-J. Gossman, J. C. Bean, L. C. Feldman, E. G. McRae, J. K. Robinson: Phys. Rev. Lett. 55, 1106 (1985)CrossRefGoogle Scholar
  10. 10.
    A. Ourmazd, D.W. Taylor, J. Bevk, B. A. Davidson, L. C. Feldman, J. P. Mannaerts: Phys. Rev. Lett. 21 1332 (1986)CrossRefGoogle Scholar
  11. 11.
    T. Ichikawa, S. Ino: Surf. Sci. 105., 395 (1981); and 136, 267 (1984)CrossRefGoogle Scholar
  12. 12.
    H.-J. Gossman, L. C. Feldman: Surf. Sci. 155, 413 (1985)CrossRefGoogle Scholar
  13. 13.
    K. Nakagawa, P. M. J. Marée, J. F. van der Veen: In Proceedings of the 18th International Conference on the Physics of Semiconductors, edited by O. Engström (World Scientific, Singapore, 1987), p. 93Google Scholar
  14. 14.
    D. Vanderbilt: submitted to Phys. Rev. BGoogle Scholar
  15. 15.
    Precisely speaking, the parameters d, c, and Δf are to be defined by the large-n limit of (1)Google Scholar
  16. 16.
    K. Takayanagi, Y. Tanishiro: Phys. Rev. B34, 1034 (1986)Google Scholar
  17. 17.
    D. Vanderbilt: in preparationGoogle Scholar
  18. 18.
    I. K. Robinson, W.K. Waskiewicz, P. H. Fuoss, L. J. Norton: to be publishedGoogle Scholar
  19. 19.
    R. S. Becker, J. A. Golovchenko, B. S. Swartzentruber: Phys. Rev. Lett. 54, 2678 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • D. Vanderbilt
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations