Surface Structures from LEED: Metal Surfaces and Metastable Phases

  • F. Jona
  • P. M. Marcus
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 11)

Abstract

We review two notable achievements of low-energy electron diffraction (LEED) research: (1) the discovery and study of surface relaxation and (2) the identification and characterization of epitaxially-grown metastable phases. Both achievements are linked to the ability of LEED to determine the atomic structure of 4–5 layers of atoms on crystal surfaces. To be sure, other surface-sensitive techniques have structure capabilities, notably high-, medium-, and low-energy ion scattering spectroscopy (HEISS, MEISS, LEISS), surface extended X-ray absorption fine structure (SEXAFS), and high-energy electron diffraction (HEED), but LEED has been, to date, the most productive technique with regard to the achievments mentioned above.

Keywords

Auger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.W. Jepsen, P.M. Marcus and F. Jona, Phys. Rev. B6, 3684 (1972)Google Scholar
  2. 2.
    G.E. Laramore and C.B. Duke, Phys. Rev. BS, 267 (1972)Google Scholar
  3. 3.
    K. Mueller and K. Heinz, in The Structure of Surfaces ed. by M.A. Van Hove and S.Y. Tong (Springer, Berlin 1985) p.105Google Scholar
  4. 4.
    F. Jona, J.A. Strozier, Jr. and P.M. Marcus, in The Structure of Surfaces ed. By M.A. Van Hove and S.Y. Tong (Springer, 1985) p.92Google Scholar
  5. 5.
    E. Zanazzi and F. Jona, Surface Science 62, 61 (1977)CrossRefGoogle Scholar
  6. 6.
    M.A. Van Hove, S.Y. Tong and M.H. Elconin, Surface Science 64, 85 (1977).CrossRefGoogle Scholar
  7. 7.
    J.B. Pendry, J. Phys. C: Solid State Physics 13 937 (1980)CrossRefGoogle Scholar
  8. 8.
    H.L. Davis and J.R. Noonan, Surface Science 126,245 (1983)CrossRefGoogle Scholar
  9. 9.
    J. Sokolov, H.D. Shih, U. Bardi, F. Jona and P.M. Marcus, Solid State Commun. 48,739 (1983)CrossRefGoogle Scholar
  10. 10.
    J. Sokolov, F. Jona and P.M. Marcus, Solid State Commun. 49, 307 (1984)CrossRefGoogle Scholar
  11. 11.
    M.W. Finnis and V. Heine, J. Phys. F: Metal Phys. 4, 7 (1974)Google Scholar
  12. 12.
    U. Landman, R.N. Hill and M. Mostoller, Phys. Rev. B21, 448 (1980)Google Scholar
  13. 13.
    P. Jiang, P.M. Marcus and F. Jona, Solid State Commun. 59, 275 (1986)CrossRefGoogle Scholar
  14. 14.
    P.M. Marcus and V.L. Moruzzi, Solid State Commun. 55, 971 (1985).CrossRefGoogle Scholar
  15. 14a.
    V.L. Moruzzi, P.M. Marcus, K. Schwarz and P. Mohn, Phys. Rev. B34, 1784 (1986)Google Scholar
  16. 15.
    W. Kummerle and U. Gradman, Solid State Commun. 24, 33 (1977).CrossRefGoogle Scholar
  17. 16.
    U. Gradman and P. Tillmans, Phys. Status Solidi (a) 44, 539 (1977)CrossRefGoogle Scholar
  18. 17.
    W. Keune, R. Holbauer, U. Gonser, J. Lauer and D.L. Williamson, J. Appl. Phys. 48, 2976 (1977)CrossRefGoogle Scholar
  19. 17.
    P.A. Montano, Y.C. Lee, J. Marcano and J. Min, in Layered Structures and Epitaxy Materials Research Society Proceedings, Vol. 56, ed. by J.M. Gibson, G.C. Osbourn and R.M. Tromp (Materials Research Society, Pittsburgh, Pa., 1986), p.183Google Scholar
  20. 18.
    Z.Q. Wang, Y.S. Li, S.H. Lu, F. Jona and P.M. Marcus, Bull. Am. Phys. Soc. 32, 531 (1987)Google Scholar
  21. 19.
    B. Heinrich, A.S. Arrott, J.F. Cochran, C. Liu and K. Myrtle, J. Vac. Sci. Technol. 4, 1376 (1986)CrossRefGoogle Scholar
  22. 20.
    Z.Q. Wang, Y.S. Li, F. Jona and P.M. Marcus, Solid State Commun. 61,623 (1987)CrossRefGoogle Scholar
  23. 21.
    Z.Q. Wang, S.H. Lu, Y.S. Li, F. Jona and P.M. Marcus, Phys. Rev. B35, (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • F. Jona
    • 1
  • P. M. Marcus
    • 2
  1. 1.College of Engineering and Applied ScienceState University of New YorkStony BrookUSA
  2. 2.IBM Research CenterYorktown HeightsUSA

Personalised recommendations