Advertisement

Auger Neutralization Lifetimes for Low-Energy Ne+ Ions Scattered from Pt(111) Surfaces

  • E. A. Eklund
  • R. S. Daley
  • J. H. Huang
  • R. S. Williams
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 11)

Abstract

Calculations of the angular distributions of soattered ions were used to simulate Impaot Collision Ion Soattering Speotrometry (ICISS) experiments. The oalculations were performed first for 2-keV Na+ ions inoident on the Pt (111) surface, a case for whioh Auger neutralization should be negligible. These oalculations were fitted to the experimental data of Niehus and Comsa to provide information about the surfaoe struoture of the sample and the trajeotories of the inoident ions. A first-order deoay model for Auger neutralization was inoluded with the oalculations for Na+ to alloy the simulation of ICISS soans for 2-keV Ne+ ions on the same surfaoe. From these simulations, the Auger neutralization half-life for Ne+ soattered from Pt was found to be 1.30 ± 0.10 femtoseoonds.

Keywords

Polar Angle Flux Peak Topmost Layer Shadow Cone Neutralization Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.K. Buok.,G.H. Wheatley and L.K. Verheij, Surf.Soi. 90, 635 (1979).CrossRefGoogle Scholar
  2. 2.
    E. Taglauer. W. Englert, W. Heiland and D.P. Jaokson, Phys. Rev. Lett. 45 740 (1980).CrossRefGoogle Scholar
  3. 3.
    S.H. Overbury. Surfaoe Sci. 112. 23 (1981).CrossRefGoogle Scholar
  4. 4.
    A.J. Algra. E. van Loenen, E.P.Th.M. Suurmeijer and A.L. Boers, Radiation Effects 60. 173 (1982).CrossRefGoogle Scholar
  5. 5.
    M. Aono, C. Oshima, S. Zaima, S. Otani and Y. Ishizawa, Japan.J.Appl.Phys. 20. L829 (1981).CrossRefGoogle Scholar
  6. 6.
    J.A. Yarmoff and R.S. Williams, Surface Soi. 166. 101 (1986)CrossRefGoogle Scholar
  7. 7.
    H. Niehus and G. Comsa. Nucl. Instr.& Methods in Phys.Res. 815 122 (1986)CrossRefGoogle Scholar
  8. 8.
    I.M. Torrens. in Interatomiq Potentials(Academic Press, New York, 1974).Google Scholar
  9. 9.
    J.F. van der Veen. Surface Sci. Reports 5, 199 (1985).CrossRefGoogle Scholar
  10. 10.
    L.L. Kesmodel and G.A. Somorjai, Phys.Rev. B 11 (2), 630 (1975).CrossRefGoogle Scholar
  11. 11.
    G. Tréglia and M.C. Desjonqueres, J.Physique 46, 987 (1985).CrossRefGoogle Scholar
  12. 12.
    J.A. Yarmoff and R.S. Williams, Surf.Sci. 127, 461 (1983).CrossRefGoogle Scholar
  13. 13.
    J.A. Yarmoff, O.M. Cyr, J.H. Huang, S. Kim, and R.S. Williams, Phys.Rev.B. 33, 3856 (1985).CrossRefGoogle Scholar
  14. 14.
    J.H. Huang, R.S. Daley, O.K. Shuh and R.S. Williams, Surf.Sci. 186, 115 (1987).CrossRefGoogle Scholar
  15. 15.
    L.K. Verhey, B. Poelsema and A.L. Boers, Nucl. Instr.& Methods 132. 565 (1976).CrossRefGoogle Scholar
  16. 16.
    D.P. Woodruff, Nucl. Instr. and Methods 194, 639 (1982).CrossRefGoogle Scholar
  17. 17.
    H.O. Hagstrum, Phys. Rev. 96, 336 (1954).CrossRefGoogle Scholar
  18. 18.
    H.W. Lee and T.R. George, Surface Sci. 172, 211 (1986).CrossRefGoogle Scholar
  19. 19.
    R. Souda, M. Aono, C. Oshima, S. Otani, Y. Ishizawa, Surface Sci. 128, L236 (1983).CrossRefGoogle Scholar
  20. 20.
    B.J. Garrison, Surface Sci. 87, 683 (1979).CrossRefGoogle Scholar
  21. 21.
    C.C. Chang, L.A. Oelouise, N. Winograd and B.J. Garrison, Surf.Sci.154, 22 (1985).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • E. A. Eklund
    • 1
  • R. S. Daley
    • 1
  • J. H. Huang
    • 1
  • R. S. Williams
    • 1
  1. 1.Department of Chemistry and Biochemistry and Solid State Science CenterUniversity of CaliforniaLos AngelesUSA

Personalised recommendations