Kidney Function

  • I.W. Henderson
  • L. B. O’Toole
  • N. Hazon

Abstract

Elasmobranch kidneys are elongate paired structures lying along the dorsal wall of the body cavity. In sharks they appear anteriorly as thread-like structures midway along the abdominal cavity and gradually widen posteriorly on either side of the dorsal aorta, to fuse and overlap at the level of the cloaca. In skates they are lobulate bodies on either side of the cloaca, running cephalad, parallel to the middorsal line in the males, but often anteriorly-degenerate in the females (Hyman 1942; Hickman and Trump 1969).

Keywords

Urea Corticosteroid Arginine Angiotensin Noradrenaline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acher R, Chauvet J, Chauvet MT, Crepy D (1965) Phylogenie des peptides neurohypophysaires: isolement d’une nouvelle hormone la glumitocine (Ser4-Gln8 ocytocine) presente chez un poisson cartilagineux la raie (Raja clavata). Biochem Biophys Acta 107: 393–396PubMedGoogle Scholar
  2. Acher R, Chauvet J, Chauvet MT, (1967) Phylogeny of the neurohypophysial hormones. Nature (Lond)216:1037CrossRefGoogle Scholar
  3. Acher R, Chauvet J, Chauvet MT (1972) Identification de deux nouvelles hormones neurohypophysaires la Valitocine Val8-ocytocine et l’Aspartocine (Asn4-ocytocine) chez un poisson selacien l’Aiguillât (Squalus acanthias). C R Acad Sci Paris 274: 313–316Google Scholar
  4. Antkowiak D, Boylan JW (1974) Glomerular population in kidney of Raja erinacea and Squalus acanthias. Bull Mt Desert Isl Biol Lab 14: 1–3Google Scholar
  5. Bern HA (1975) Prolactin and osmoregulation. Am Zool 15: 937–948Google Scholar
  6. Beyenbach KW, Fromter RO (1985) Electrophysiological evidence for Cl sécrétion in shark renal proximal tubules. Am J Physiol 248: F282-F295PubMedGoogle Scholar
  7. Borcea I (1906) Recherches sur le système uro-genital des elasmobranches. Arch Zool Exp Gen 4th. Serie 5: 199–484Google Scholar
  8. Boylan JW (1967) Gill permeability in elasmobranchs. In: Gilbert PW, Mathewson RF, Rail DP (eds) Sharks, Skates and Rays. Johns Hopkins University Press, Baltimore, pp 197–206Google Scholar
  9. Boylan JW (1972) A model of passive reabsorption in the elasmobranch kidney. Comp Biochem Physiol 42A: 27–30CrossRefGoogle Scholar
  10. Brown JA, Green C (1987) Single nephron function of the lesser spotted dogfish, S. canicula, and effects of adrenaline. J Exp Biol 129: 265–278PubMedGoogle Scholar
  11. Burger JW (1965) Roles of the rectal gland and kidneys in salt and water secretion in the spiny dogfish. Physiol Zool 38: 191–196Google Scholar
  12. Burger JW (1967) Problems in the electrolyte economy of the spiny dogfish Squalus acanthias. In: Gilbert PW, Mathewson RF, Rail DP (eds) Sharks, Skates and Rays. Johns Hopkins University Press Baltimore, pp 177–186Google Scholar
  13. Chan DKO, Phillips JG, Chester Jones I (1967) Studies on the electrolyte changes in the lip-shark Hemiscyllium plagiosum with special reference to hormonal influences on the rectal gland. Comp Biochem Physiol 23: 185–195Google Scholar
  14. Chauvet J, Chauvet MT, Beaupain D, Acher R (1965) Les hormones neurophysaires des raies. Comparison des hormones du pocheteau blanc Raja bâtis et de la raie bouclée Raja clavata. C R Acad Sci Paris 261: 4234–4236Google Scholar
  15. Cohen JJ, Krupp MA, Chidsey III CA (1958) Renal conservation of trimethylamine oxide by the spiny dogfish Squalus acanthias. Am J Physiol 194: 229–235PubMedGoogle Scholar
  16. Cohen JJ, Krupp MA, Chidsey III CA, Blitz CL (1959) Effect of TMA and its homologues on renal conservation of TMA-oxide in the spiny dogfish Squalus acanthias. Am J Physiol 196: 93–99PubMedGoogle Scholar
  17. Crockett DR, Gerst JW, Blankenship S (1973) Absence of juxtaglomerular cells in the kidneys of elasmobranch fishes. Comp Biochem Physiol 44A: 673–675CrossRefGoogle Scholar
  18. Deetjen P, Antkowiak D (1970) The nephron of the skate Raja erinacea. Bull Mt Desert Isl Biol Lab 10:5Google Scholar
  19. Deetjen P, Boylan JW (1968) Linear velocity and flow rate of tubular fluid in surface nephrons of Squalus acanthias in situ. Bull Mt Desert Isl Biol Lab 8: 16–17Google Scholar
  20. Deetjen P, Antkowiak D, Boylan JW (1972) Urea reabsorption by the skate nephron: micropuncture of collecting ducts in Raja erinacea. Bull Mt Desert Isl Biol Lab 12: 28–29Google Scholar
  21. Della Corte F, Chieffi G (1961) Morfologia e citologia dell’ipofisi di Torpedo marmorata Risso, nei giovani, nei maschi adulti in spermatogenesi e nelle femmine adulte in vari stadi dell’attività sessuale. Arch Ital Anat Embriol 66: 313–339Google Scholar
  22. De Vlaming VL, Sage M (1973) Osmoregulation in the euryhaline elasmobranch Dasyatis sabina. Comp Biochem Physiol 45A: 31–44CrossRefGoogle Scholar
  23. De Vlaming VL, Sage M, Beitz B (1975) Aspects of endocrine control of osmoregulation in the euryhaline elasmobranch Dasyatis sabina. Comp Biochem Physiol 52A: 505–514CrossRefGoogle Scholar
  24. Endo M (1984) Histological and enzymatic studies on the renal tubules of some marine elasmobranchs. J Morphol 182: 63–69CrossRefGoogle Scholar
  25. Forster RP (1970) Urea and the early history of renal clearance studies. In: Schmidt-Nielsen B, Kerr DWS (eds) Urea and the kidney. Excerpta Med Found, Amsterdam p 227Google Scholar
  26. Forster RP, Berglund F (1957) Contrasting inhibitory effects of probenicid on the renal tubular excretion of PAH and on active reabsorption of urea in dogfishSqualus acanthias. J Cell Comp Physiol 49: 281–285CrossRefGoogle Scholar
  27. Forster RP, Goldstein L, Rosen SK (1972) Intrarenal control of urea reabsorption by renal tubules of the marine elasmobranch Squalus acanthias. Comp Biochem Physiol 42A: 3–12CrossRefGoogle Scholar
  28. Ghouse HM, Parsa B, Boylan JW, Brennan JC (1968) The anatomy, microanatomy and ultrastructure of the kidney of the dogfishSqualus acanthias. Bull Mt Desert Isl Biol Lab 8: 22–39Google Scholar
  29. Gordon MS, Schmidt-Nielsen K, Kelly HM (1961) Osmotic regulation in the crab eating frog Rana cancrivora. J Exp Biol 38: 659–678Google Scholar
  30. Green C (1986) Single nephron structure and function, and renal effects of catecholamines in the dogfish Scyliorhinus canícula. PhD Thesis, University of Hull.Google Scholar
  31. Guilland-Cumming DF, Clayton J, Hayes M, Henderson IW, Johnson S, Russell RGG (1982) Vitamin D in elasmobranch and teleost fish. Proc. 1st Joint Meeting of British Endocrine Societies, London, 1982. Abst No 114Google Scholar
  32. Haller B (1902) Über die Urniere von Acanthias vulgaris, ein Beitrag zur Kenntnis sekundärer Metamerie. Gegenbaurs Morphol Jahrb 29: 283–316Google Scholar
  33. Hays RM, Levine SD, Myers SD, Heinemann HO, Kaplan MA, Franki N, Berliner H (1977) Urea transport in the dogfish kidney. J Exp Zool 199: 309–315PubMedCrossRefGoogle Scholar
  34. Hayslett JP, Jampol LM, Forrest JN, Epstein M, Murdaugh HV (1972) Lack of effect of calcitonin on renal function in the elasmobranch Squalus acanthias. Comp Biochem Physiol 44: 417–422CrossRefGoogle Scholar
  35. Hazon N, Henderson IW (1984) Secretory dynamics of la-hydroxycorticosterone in an elasmobranch. J Endocrinol 103:205–211PubMedCrossRefGoogle Scholar
  36. Hazon N, Henderson IW (1985 a) Factors affecting the secretory dynamics oí la-hydroxycorticoste-rone in the dogfishScyliorhinus canícula. Gen Comp Endocrinol 59: 50–55PubMedCrossRefGoogle Scholar
  37. Hazon N, Henderson IW (1985b) Urea metabolism and osmotic stress: possible role of an adrenocortical steroid. Gen Comp Endocrinol 53: 473Google Scholar
  38. Henderson IW, Brown JA, Oliver JA, Haywood GP (1978) Hormones and single nephron function in fishes. In: Gaillard PJ, Boer HH (Eds) Comparative Endocrinology. Elsevier/North Holland Biomedical Press, Amsterdam, pp 217–222Google Scholar
  39. Henderson IW, Oliver JA, McKeever A, Hazon N (1980) Phylogenetic aspects of the renin- angiotensin system. In: Pethes G. Frenyo VL (eds) Advances in animal and comparative physiology. Pergamon, Ademiai Kiaddo, Budapest, pp 353–363 (Advances in Physiological Sciences Vol 20)Google Scholar
  40. Hickman CP, Trump BF (1969) The kidney. In: Hoar WS, Randall DJ (eds) Fish Physiology. Academic Press, New York, pp 91–239Google Scholar
  41. Honn KV, Chavin W (1977) Mechanism of thyroxine action upon nurse shark gill and kidney tissues. Am Zool 17: 857Google Scholar
  42. Hyman LH (1942) Comparative vertebrate anatomy. University of Chicago Press, Chicago, 111Google Scholar
  43. Idler DR, Kane KM (1980) Cytosol receptor glycoprotein for la-hydroxycorticosterone in tissues of an elasmobranch fish Raja ocellata. Gen Comp Endocrinol 42: 259–266PubMedCrossRefGoogle Scholar
  44. Kempton RT (1939) The morphology of the dogfish renal tubule. Bull Mt Desert Isl Biol Lab 42: 28–34Google Scholar
  45. Kempton RT (1953) Studies on the elasmobranch kidney II Reabsorption of urea by the smooth dogfish Mustelus canis. Biol Bull 104: 45–56CrossRefGoogle Scholar
  46. Kempton RT (1956) The problem of the “special segment” of the elasmobranch kidney tubule. Year Book Am Phil Soc pp 210–212Google Scholar
  47. Kempton RT (1966) Studies on the elasmobranch kidney IV The secretion of phenol red by the smooth dogfish Mustelus canis. Biol Bull 130: 359–368CrossRefGoogle Scholar
  48. Kime DE (1977) Measurement of la-hydroxycorticosterone and other corticosteroids in elasmobranch plasma by radioimmunoassay. Gen Comp Endocrinol 33: 344–351PubMedCrossRefGoogle Scholar
  49. Lacy ER, Reale E (1985a) The elasmobranch kidney I: Gross anatomy and general distribution of nephrons. Anat Embryol 173: 23–34PubMedCrossRefGoogle Scholar
  50. Lacy ER, Reale E (1985 b) The elasmobranch kidney II. Sequence and structure of the nephrons. Anat Embryol 173: 163–186PubMedCrossRefGoogle Scholar
  51. Lacy ER, Schmidt-Nielsen B, Galaske RG, Stolte H (1975) Configuration of the skate(Raja erinacea) nephron and ultrastructure of two segments of the proximal tubule. Bull Mt Desert Isl Biol Lab 15: 54–56Google Scholar
  52. Lacy ER, Reale E, Schlusselburg DS, Smith WK, Woodward DJ (1985) A renal countercurrent system in marine elasmobranch fish: A computer assisted reconstruction. Science 227: 1351–1354PubMedCrossRefGoogle Scholar
  53. Maetz J, Lahlou B (1974) Actions of neurohypophysical hormones in fishes. In: Handbook of Physiology, Section 7: vol IV (1) American Physiological Society, Washington D.C., pp 521–544Google Scholar
  54. Marshall EK (1930) A comparison of the function of the glomerular and aglomerular kidney. Am J Physiol 94: 1–10Google Scholar
  55. Marshall EK (1934) The comparative physiology of the kidney in relation to theories of renal secretion. Physiol Rev 14: 133–159Google Scholar
  56. Mellinger JCA (1962) Cytologie hypophysaire de Scyliorhinus canicula (L) et d’autres poissons elasmobranches microscopie ordinaire et microscopie éléctronique. C R Acad Sci Paris 255: 2294–2296PubMedGoogle Scholar
  57. Nash J (1931) The number and size of kidneys in fishes with observations on the morphology. Am J Anat 47: 425–445CrossRefGoogle Scholar
  58. Nishimura H (1980) Comparative endocrinology of renin and angiotensin. In: Johnson JA Anderson AA (eds) The Renin Angiotensin System. Plenum, New York, pp 29–77Google Scholar
  59. Nishimura H, Oguri M, Ogawa M, Sokabe H, Imai M (1970) Absence of renin in kidneys of elasmobranchs and cyclostomes. Am J Physiol 218: 911–915PubMedGoogle Scholar
  60. Nishimura H, Ogawa M Sawyer WH (1973) Renin-angiotensin system in primitive bony fishes and a holocephalan. Am J Physiol 224: 950–956PubMedGoogle Scholar
  61. Norris ER, Benoit GR Jr (1945) Studies on trimethylamine oxide. 1. Occurrence of trimethylamine oxide in marine organisms. J Biol Chem 158: 437–438Google Scholar
  62. Oguri M (1978) Presence of juxtaglomerular cells in the holocephalan kidney. Gen Comp Endocrinol 36:170–173PubMedCrossRefGoogle Scholar
  63. Oguri M, Ogawa M, Sokabe H (1970) Absence of juxtaglomerular cells in the kidneys of Chon-drichthyes and cyclostomes. Bull Jpn Soc Sci Fish 36: 881–884CrossRefGoogle Scholar
  64. Opdyke DF, Holcombe R (1976) Response to angiotensin I and II and to angiotensin I-converting enzyme inhibitor in a shark. Am J Physiol 231: 1750–1753PubMedGoogle Scholar
  65. Payan P, Maetz J (1970) Balance hydrique et minérale chez les elasmobranches: arguments en faveur d’un contrôle endocrinien. Bull Inf Sci Tech Commt Energ Atom 146: 77–96Google Scholar
  66. Sawyer DB, Cliff WH, Wilhelm MM, Fromter RO, Beyenbach KW (1985 a) Proximal tubules of the glomerular shark kidney secrete fluid via secretion of NaCl. Fed Proc 44: 8688Google Scholar
  67. Sawyer DB, Cliff WH, Wilhelm MM, Fromter RO, Beyenbach KW (1985 b) Mechanism of fluid secretion by proximal tubules in the glomerular kidney of the shark. Kidney Int 27: 319Google Scholar
  68. Sawyer WH (1972) Lungfishes and amphibians: endocrine adaptation and the transition from aquatic to terrestrial life. Fed Proc 31: 1609–1614PubMedGoogle Scholar
  69. Sawyer WH, Manning M, Heinicke E, Perks AM (1969) Elasmobranch oxytocin-like principles: comparisons with synthetic glumitocin. Gen Comp Endocrinol 12: 387–390PubMedCrossRefGoogle Scholar
  70. Schmidt-Nielsen B, Rabinowitz L (1964) Methylurea and acetamide: active reabsorption by elasmobranch renal tubules. Science 146: 1587–1588PubMedCrossRefGoogle Scholar
  71. Schmidt-Nielsen B, Truninger B, Rabinowitz L (1972) Sodium-linked urea transport by the renal tubule of the spiny dogfish Squalus acanthias. Comp Biochem Physiol 42A: 13–25CrossRefGoogle Scholar
  72. Shannon JA (1940) On the mechanism of the renal tubular excretion of creatinine by the dogfish Squalus acanthias. J Cell Comp Physiol 16: 285–291CrossRefGoogle Scholar
  73. Smith HW (1931) The absorption and secretion of water and salts by the elasmobranch fishes. II. Marine elasmobranchs. Am J Physiol 98: 296–310Google Scholar
  74. Smith HW (1936) The retention and physiological role of urea in the elasmobranchii. Biol Rev 11: 49–82CrossRefGoogle Scholar
  75. Smith WW (1939.) The excretion of phosphate in the dogfishSqualus acanthias. J Cell Comp Physiol 14: 95–102CrossRefGoogle Scholar
  76. Stolte H, Galaske RG, Eisenbach GM, Lechene C, Schmidt-Nielsen B, Boylan JW (1977) Renal tubule ion transport and collecting duct function in the elasmobranch little skate Raja erinacea. J Exp Zool 199:403–410PubMedCrossRefGoogle Scholar
  77. Thurau K, Acquisto P (1969) Localization of the diluting segment in the dogfish nephron: a micro-puncture study. Bull Mt Desert Isl Biol Lab 9: 60–63Google Scholar
  78. White BA, Nicholl CS (1980) Renal and hepatic prolactin receptors among vertebrates. Am Zool 20: 830Google Scholar
  79. Wong TM, Chan DKO (1977) Physiological adjustments to dilution of the external medium in the lip- shark Hemiscyllium plagiosum (Bennett), II: Branchial, renal and rectal gland function. J Exp Zool 200: 85–96CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • I.W. Henderson
    • 1
  • L. B. O’Toole
    • 2
  • N. Hazon
    • 2
  1. 1.Department of ZoologyUniversity of SheffieldSheffieldUK
  2. 2.Department of Physiology and Pharmacology, Gatty Marine LaboratoryUniversity of St. AndrewsUK

Personalised recommendations