Skip to main content

Salt and Water Balance — Extrarenal Mechanisms

  • Chapter
Physiology of Elasmobranch Fishes

Abstract

Current theories of vertebrate evolution suggest that primitive fish-like vertebrates originally evolved in a freshwater habitat and that the appearance of marine forms resulted from a subsequent reinvasion of the sea. It appears that such a reinvasion followed two basic patterns — whilst the bony fish retained a relatively low osmotic concentration of their body fluids and developed in the sea as hypo-osmotic regulators, the early cartilagenous fish elevated the osmotic concentration of their body fluids so as to become isosmotic, or slightly hyperosmotic, to their marine environment. The elevation of body fluid osmotic concentration in the latter group was mainly achieved, however, not by large increases in inorganic ion concentrations, but by the accumulation and retention of certain organic nitrogenous compounds, such as urea and trimethylamine oxide (TMAO). The net result of this early divergence in osmoregulatory strategy means that the two major groups of marine fish, the teleosts and the elasmobranchs, are fundamentally different in their osmotic status, although they do both face broadly similar problems of ionic balance. For elasmobranchs, the basic problems of hydromineral regulation therefore centre on the retention of urea and related compounds, and the elimination of excess ions. This latter process involves an unusual organ, the salt-secreting rectal gland, which has attracted considerable interest, originally as an extremely rich source of the enzyme Na-K-ATPase (Hokin et al. 1973), and more recently as a model system for a particularly widespread, and medically highly important, transport process — the secondary active transport of chloride.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altringham JD, Yancey PH, Johnston IA (1982) The effects of osmoregulatory solutes on tension generation by dogfish skinned muscle fibres. J Exp Biol 96: 443–146

    CAS  Google Scholar 

  • Beit BE (1977) Secretion of rectal gland fluid in the Atlantic stingray, Dasyatis sabina. Copeia 1977: 585–587

    Google Scholar 

  • Bentley PJ, Maetz J, Payan P (1976) A study of the unidirectional fluxes of Na and CI across the gills of the dogfishScyliorhinus canicula (Chondrichthyes). J Exp Biol 64: 629–637

    PubMed  CAS  Google Scholar 

  • Bigelow HB, Schroeder WC (1966) Carcharhinus nicaraguensis, a synonym of the bull shark, C. leucas. Copeia 1966: 620–622

    Google Scholar 

  • Bittner A, Lang S (1980) Some aspects of the osmoregulation of Amazonian freshwater stingrays (Potamotrygon hystrix) I. Serum osmolality, sodium and chloride content, water content, hematocrit and urea level. Comp Biochem Physiol 67A: 9–13

    CAS  Google Scholar 

  • Bonting SL (1966) Studies on sodium-potassium-activated adenosinetriphosphate — XV the rectal gland of the elasmobranchs. Comp Biochem Physiol 17: 953–966

    PubMed  CAS  Google Scholar 

  • Boylan JW (1967) Gill permeability in Squalus acanthias. In: Gilbert PW, Mathewson RF, Rail DP (eds) sharks, skates and rays. John Hopkins, Baltimore, pp 197–206

    Google Scholar 

  • Boylan JW, Lockwood M (1962) Urea and thiourea excretion by dogfish kidney and gill: effect of temperature. Bull Mt Desert Isl Biol Lab 4: 25

    Google Scholar 

  • Boylan JW, Feldman B, Antowiak D (1963) Factors affecting gill permeability inSqualus acanthias. Bull Mt Desert Isl Biol Lab 5: 29

    Google Scholar 

  • Bulger RE (1963) Fine structure of the rectal (salt-secreting) gland of the spiny dogfish, Squalus acanthias. Anat Rec 147: 95–127

    PubMed  CAS  Google Scholar 

  • Burger JW (1962) Further studies on the function of the rectal gland in the spiny dogfish. Physiol Zool 35:205–217

    CAS  Google Scholar 

  • Burger JW (1965) Roles of the rectal gland and the kidneys in salt and water excretion in the spiny dogfish. Physiol Zool 38: 191–196

    Google Scholar 

  • Burger JW (1967) Problems in the electrolyte economy of the spiny dogfish Squalus acanthias. In: Gilbert PW, Mathewson RF, Rail DP (eds) sharks, skales and rays. John Hopkins, Baltimore, pp 177–185

    Google Scholar 

  • Burger JW, Hess WN (1960) Function of the rectal gland in the spiny dogfish. Science 131: 670–671

    PubMed  CAS  Google Scholar 

  • Burger JW, Tosteson DC (1966) Sodium influx and efflux in the spiny dogfish Squalus acanthias. Comp Biochem Physiol 19: 649–653

    CAS  Google Scholar 

  • Butler PJ, Taylor EW, Capra MF, Davison W (1978) The effect of hypoxia on the levels of circulating catecholamines in the dogfishScyliorhinus canicula. J Comp Physiol 127: 325–330

    CAS  Google Scholar 

  • Carrier JC, Evans DH (1972) Ion, water and urea turnover rates in the nurse shark, Ginglymostoma cirratum. Comp Biochem Physiol 41 A: 761–764

    Google Scholar 

  • Carrier JC, Evans DH (1973) Ion and water turnover in the freshwater elasmobranch Potamotrygon sp. Comp Biochem Physiol 45A: 667–670

    Google Scholar 

  • Chan DKO, Phillips JG (1967) The anatomy, histology and histochemistry of the rectal gland of the lip-sharkHemiscyllum plagiosum (Bennett). J Anat 101: 137–157

    PubMed  CAS  Google Scholar 

  • Chan DKO, Phillips JG, Chester Jones I (1967) Studies on electrolyte changes in the lip-shark, Hemiscyllium plagiosum (Bennett), with special reference to hormonal influence on the rectal gland. Comp Biochem Physiol 23: 185–198

    PubMed  CAS  Google Scholar 

  • Crespo S (1982) Surface morphology of dogfish (Scyliorhinus canicula) gill epithelium and surface morphological changes following treatment with zinc sulphate: a scanning electron microscope study. Mar Biol 67: 159–166

    CAS  Google Scholar 

  • de Vlaming VL, Sage M (1972) Some aspects of endocrine control of osmoregulation in the euryhaline elasmobranch Dasyatis sahina. Am Zool 12: 676

    Google Scholar 

  • de Vlaming VL, Sage M (1973) Osmoregulation in the euryhaline elasmobranch, Dasyatis sahina. Comp Biochem Physiol 45A: 31–44

    Google Scholar 

  • de Vlaming VL, Sage M, Beitz B (1975) Pituitary, adrenal and thyroid influences on osmoregulation in the euryhaline elasmobranch, Dasyatis sahina. Comp Biochem Physiol 52A: 505–513

    Google Scholar 

  • Dimaline R, Thorndyke MC (1986) Purification and characterisation of VIP from two species of dogfish. Peptides 7 Suppl 1: 21–25

    PubMed  CAS  Google Scholar 

  • Dimaline R, Thorndyke MC, Young J (1986) Isolation and partial sequence of elasmobranch VIP. Regul Pept14: 1–10

    PubMed  CAS  Google Scholar 

  • Doyle WL (1962) Tubule cells of the rectal salt-gland of Urolophus. Am J Anat 111: 223–237

    PubMed  CAS  Google Scholar 

  • Doyle WL, Gorecki D (1961) The so-called chloride cells of the fish gill. Physiol Zool 34: 81–85

    Google Scholar 

  • Duffey ME, Silva P, Frizzell RA (1978) Intracellular electrical potentials and chloride activities in the perfused rectal gland of Squalus acanthias: a report of preliminary data. Bull Mt Desert Isl Biol Lab 18: 73–74

    Google Scholar 

  • Epstein FH, Stoff J, Silva P, Spokes K, Myers M (1982) Somatostatin inhibition of rectal gland secretion. Bull Mt Desert Isl Biol Lab 22: 11–12

    Google Scholar 

  • Epstein FH, Stoff JS, Silva P (1983) Mechanism and control of hyperosmotic Nl-rich secretion by the rectal gland of Squalus acanthias. J Exp Biol 106: 25–41

    PubMed  CAS  Google Scholar 

  • Erlij D, Rubio R (1986) Control of rectal gland secretion in the dogfish (Squalus acanthias): steps in the sequence of activation. J Exp Biol 422: 99–112

    Google Scholar 

  • Erlij D, Silva P, Reinach P (1978) Effects of adenosine and other purine derivatives on the secretion of salt and water by the rectal gland of Squalus acanthias. Bull Mt Desert Isl Biol Lab 18: 92–93

    Google Scholar 

  • Ernst SA, Mills JW (1977) Basolateral plasma membrane localization of the ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland. J Cell Biol 75: 74–94

    PubMed  CAS  Google Scholar 

  • Ernst SA, Hootman SR, Schreiber JH, Riddle CV (1981) Freeze fracture and morphometric analysis of occluding junctions in rectal glands of elasmobranch fish. J Membr Biol 58: 101–114

    PubMed  CAS  Google Scholar 

  • Evans DH (1982) Mechanisms of acid extrusion by two marine fishes: the teleost, Opsanus beta, and the elasmobranch, Squalus acanthias. J Exp Biol 97: 289–299

    CAS  Google Scholar 

  • Evans DH (1984) Gill Na+/H+ and Cr/HCO3” exchange systems evolved before the vertebrates entered fresh water. J Exp Biol 113: 465–469

    PubMed  CAS  Google Scholar 

  • Evans DH, Oikari A, Kormanik GA, Mansberger L (1982) Osmoregulation by the prenatal spiny dogfish, Squalus acanthias. J Exp Biol 101: 295–305

    CAS  Google Scholar 

  • Eveloff J, Kinne R, Kinne-Saffran E, Murer H, Silva P, Epstein FH, Stoff J, Kinter WB (1978) Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland. Pflugers Arch 378: 87–92

    PubMed  CAS  Google Scholar 

  • Eveloff J, Karnaky KJ, Silva P, Epstein FH, Kinter WB (1979) Elasmobranch rectal gland cell. Autoradiographic localization of (3H)ouabain-sensitive Na, K-ATPase in rectal gland of dogfish, Squalus acanthias. J Cell Biol 83: 16–32

    PubMed  CAS  Google Scholar 

  • Falkmer S, Fahrenkrug J, Alumets J, Hakanson R, Sundler F (1980) Vasoactive intestinal polypeptide (VIP) in epithelial cells of the gut mucosa of an elasmobranchian cartilaginous fish, the ray. Endocrinol Jpn Suppl 1: 31–35

    Google Scholar 

  • Fenstermacher J, Sheldon F, Ratner J, Roomet A (1972) The blood to tissue distribution of various polar materials in the dogfish, Squalus acanthias. Comp Biochem Physiol 42A: 195–204

    Google Scholar 

  • Forrest JN, Rieck D, Murdaugh A (1980) Evidence for a ribose specific adenosine receptor (Ra)mediating stimulation of chloride secretion in the rectal gland ofSqualus acanthias. Bull Mt Desert Isl Biol Lab 20: 152–155

    Google Scholar 

  • Forrest JN, Boyer JL, Ardito TA, Murdaugh HV, Wade JB (1982) Structure of tight junctions during chloride secretion in the perfused rectal gland of the dogfish shark Squalus acanthias. Am J Physiol 242: C388-C392

    PubMed  CAS  Google Scholar 

  • Forster RP, Goldstein L, Rosen JK (1972) Interenal control of urea reabsorbtion by renal tubules of the marine elasmobranch, Squalus acanthias. Comp Biochem Physiol 42A: 3–12

    Google Scholar 

  • Foskett JK, Bern HA, Machin TE, Conner M (1983) Chloride cells and the hormonal control of teleost fish osmoregulation. J Exp Biol 106: 255–281

    PubMed  CAS  Google Scholar 

  • Fouchereau-Peron M, Laburthe M, Besson J, Rosselin G, Le Gal Y (1980) Characterization of the vasoactive intestinal polypeptide (YIP) in the gut of fishes. Comp Biochem Physiol 65A: 489–492

    CAS  Google Scholar 

  • Foulley M-M, Wrisez F, Meilinger J (1981) Observation sur la perméabilité asymétrique de la coque de l’oeuf de Roussette (Scyliorhinus canicula). CR Acad Sci Paris 293: 389–394

    Google Scholar 

  • Frizzell RA, Dugas MC, Schultz SG (1975) Sodium chloride transport by rabbit gall bladder. J Gen Physiol 65: 769–795

    PubMed  CAS  Google Scholar 

  • Frizzell RA, Field M, Schultz SG (1979) Sodium-coupled chloride transport by epithelial tissues. Am J Physiol 236: F1-F8

    PubMed  CAS  Google Scholar 

  • Garcia-Romeu F, Masoni A (1970) Sur la mise en évidence des cellules à chlorure de la branchie des poissons. Arch Anat Microsc Morphol Exp 59: 289–294

    PubMed  CAS  Google Scholar 

  • Gerst JW, Thorson TB (1977) Effects of saline acclimation on plasma electrolytes, urea excretion and hepatic urea biosynthesis in a freshwater stingray, Potamotrygon sp. Garman, 1877. Comp Biochem Physiol 56A: 87–93

    Google Scholar 

  • Goertemiller CC, Ellis RA (1976) Localization of ouabain-sensitive, potassium-dependent nitro- phenyl phosphatase in the rectal gland of the spiny dogfish, Squalus acanthias. Cell Tissue Res 175: 101–112

    CAS  Google Scholar 

  • Goldstein L (1982) Gill nitrogen excretion. In: Houlihan DF, Rankin JC, Shuttleworth TJ (eds)Gills. Cambridge University Press, Cambridge, pp 193–206

    Google Scholar 

  • Goldstein L, Forster RP (1971a) Osmoregulation and urea metabolism in the little skate Raja erinacea. Am J Physiol 220: 742–746

    PubMed  CAS  Google Scholar 

  • Goldstein L, Forster RP (1971b) Urea biosynthesis and excretion in freshwater and marine elasmobranchs. Comp Biochem Physiol 39B: 415–421

    Google Scholar 

  • Goldstein L, Palatt PJ (1974) Trimethylamine oxide excretion rates in elasmobranchs. Am J Physiol 227: 1268–1272

    PubMed  CAS  Google Scholar 

  • Goldstein L, Hartman SC, Forster RP (1967) On the origin of trimethylamine oxide in the spiny dogfish, Squalus acanthias. Comp Biochem Physiol 21: 719–722

    PubMed  CAS  Google Scholar 

  • Goldstein L, Oppelt WW, Maren TH (1968) Osmotic regulation and urea metabolism in the lemon shark Negaprion brevirostris. Am J Physiol 215: 1493–1497

    PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E (1983) Properties of the basolateral membrane of the cortical thick ascending limb of the Henle’s loop of rabbit kidney. A model for secondary active chloride transport. Pflügers Arch 396: 325–334

    PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E (1984) Mechanism of Nl secretion in the rectal gland of spiny dogfish (Squalus acanthias) I Experiments in isolated in vitro perfused rectal gland tubules. Pflügers Arch 402: 63–75

    PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E, Wang F, Forrest JN (1984) Mechanism of Nl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias) III Effects of stimulation of secretion by cyclic AMP. Pflügers Arch 402: 376–384

    PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E, Gogelein H (1985) Cl”-channels in the apical cell membrane of the rectal gland “induced” by MP. Pflügers Arch 403: 446–448

    PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E, Gogelein H (1986) Sodium chloride secretion in rectal gland of dogfish, Squalus acanthias. NIPS 1: 134–136

    Google Scholar 

  • Griffith PW, Pang PKT, Srivästava AK, Pickford GE (1973) Serum composition of freshwater stingrays (Potamotrygonidae) adapted to fresh and dilute seawater. Biol Bull 144: 304–320

    CAS  Google Scholar 

  • Hannafm J, Kinne-Saffran E, Friedman D, Kinne R (1983) Presence of a sodium potassium chloride cotransport system in the rectal gland of Squalus acanthias. J Membr Biol 75: 73–84

    Google Scholar 

  • Hannafm JA, Kinne R (1985) Active chloride transport in rabbit thick ascending limb of Henle’s loop and elasmobranch rectal gland: chloride fluxes in isolated plasma membranes. J Comp Physiol 155:415–421

    Google Scholar 

  • Hayslett JP, Schon DA, Epstein M, Hogben CAM (1974) In vitro perfusion of the dogfish rectal gland. Am J Physiol 226: 1188–1192

    PubMed  CAS  Google Scholar 

  • Haywood GP (1974) The exchangeable ionic space, and slinity effects upon ion, water, and urea turnover rates in the dogfish Poroderma africanum. Mar Biol 26: 69–75

    CAS  Google Scholar 

  • Haywood GP (1975) A preliminary investigation into the roles played by the rectal gland and kidneys in the osmoregulation of the striped dogfish Poroderma africanum. J Exp Zool 193: 167–176

    PubMed  CAS  Google Scholar 

  • Hodler J, Heineman HO, Fishman AP, Smith HW (1955) Urine and carbonic anhydrase activity in the marine dogfish. Am J Physiol 183: 155–162

    PubMed  CAS  Google Scholar 

  • Hokin LE, Dahl JL, Dupree JD, Dixon JF, Hackney JF, Perdue JF (1973) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X Purification of the enzyme from the rectal gland of Squalus acanthias. J Biol Chem 248: 2593–2605

    PubMed  CAS  Google Scholar 

  • Holmes WN, Donaldson EM (1969) The body compartments and the distribution of electrolytes. In: Hoar WS, Randall D J (eds) Fish Physiology Vol 1. Academic Press, New York

    Google Scholar 

  • Holt WF, Idler DR (1975) Influence of the interrenal gland on the rectal gland of a skate. Comp Biochem Physiol 50C: 111–119

    Google Scholar 

  • Hornsey DJ (1978) Permeability coefficients of the egg case membrane of Scyliorhinus canicula. Experientia 34: 1596–1597

    PubMed  CAS  Google Scholar 

  • Horowicz P, Burger JW (1968) Unidirectional fluxes of sodium ions in the spiny dogfish, Squalus acanthias. Am J Physiol 214: 635–642

    PubMed  CAS  Google Scholar 

  • Jampol LM, Epstein FH (1970) Sodium-potassium-activated adenosine triphosphatase and osmotic regulation by fishes. Am J Physiol 218: 607–611

    PubMed  CAS  Google Scholar 

  • Kelley GG, Nuland AM, Andreoni K, Forrest JN (1985) Endogenous adenosine inhibits chloride secretion via A, adenosine receptors in the rectal gland of the shark, Squalus acanthias. Bull Mt Desert Isl Biol Lab 25: 108–110

    Google Scholar 

  • Kent B, Olson KR (1982) Blood flow in the rectal gland ofSqualus acanthias. Am J Physiol 24: R296-R303

    Google Scholar 

  • Kormanik G A, Evans DH (1986) The acid-base status of prenatal pups of the dogfish, Squalus acanthias, in the uterine environment. J Exp Biol 125: 173–179

    PubMed  CAS  Google Scholar 

  • Laurent P (1982) Structure of vertebrate gills. In: Houlihan DF, Rankin JC, Shuttleworth TJ (eds) Gills. Cambridge University Press, Cambridge, pp 25–43

    Google Scholar 

  • Maetz J, Lahlou B (1966) Les échanges de sodium et de chlore chez un élasmobranche, Scyliorhinus, mesurés à l’aide des isotopes 24Na et 36C1. J Physiol (Paris) 58: 249

    Google Scholar 

  • Maren TH (1962) Ionic composition of cerebrospinal fluid and aqueous humor of the dogfish, Squalus acanthias II Carbonic anhydrase activity and inhibition. Comp Biochem Physiol 5: 201–215

    PubMed  CAS  Google Scholar 

  • Motais R, Isaia J, Rankin JC, Maetz J (1969) Adaptive changes of the water permeability of the teleostean gill epithelium in relation to external salinity. J Exp Biol 51: 529–546

    PubMed  CAS  Google Scholar 

  • Needham J, Needham DM (1930) Nitrogen excretion in selachian ontogeny. J Exp Biol 7: 7–18

    CAS  Google Scholar 

  • Nellans HN, Frizzell RA, Schultz SG (1973) toupled sodium-chloride influx across the brush border of rabbit ileum. Am J Physiol 225: 467–475

    PubMed  CAS  Google Scholar 

  • Oguri M (1964) Rectal glands of marine and freshwater sharks: comparative histology. Science 144: 1151–1152

    PubMed  CAS  Google Scholar 

  • Osswald H, Sacher R, Forrest JN (1983) Adenosine release by the isolated perfused rectal gland of Squalus acanthias. Bull Mt Desert Isl Biol Lab 23: 89–90

    Google Scholar 

  • Palmer RF (1966) In vitro perfusion of the isolated rectal gland of Squalus acanthias. Clin Res 14: 77

    Google Scholar 

  • Pang PKT, Griffith RW, Atz JW (1972) Osmoregulation in elasmobranchs. Am Zool 17: 365–377

    Google Scholar 

  • Pang PKT, Griffith RW, Maetz J, Pic P (1980) Calcium uptake in fishes. In: Lahlou B (ed) Epithelial transport in lower vertebrates. Cambridge University Press, Cambridge, pp 121–132

    Google Scholar 

  • Payan P, Maetz J (1970) Balance hydrique et minérale chez les elasmobranches: arguments en faveur d’un contrôle endocrinien. Bull Inf Sci Techn CEA 146: 77–96

    Google Scholar 

  • Payan P, Maetz J (1971) Balance hydrique chez les elasmobranches: arguments en faveur d’un contrôle endocrinien: Gen Comp Endocrinol 16: 535–554

    CAS  Google Scholar 

  • Payan P, Maetz J (1973) Branchial sodium transport mechanisms in Scyliorhinus canicula: evidence for Na+NH+ and Na+/H+ exchanges and for a role of carbonic anhydrase. J Exp Biol 58: 487–502

    CAS  Google Scholar 

  • Payan P, Goldstein L, Forster RP (1973) Gills and kidneys in ureosmotic regulation in euryhaline skates. Am J Physiol 224: 367–372

    PubMed  CAS  Google Scholar 

  • Poeschla E, Kelley G, Boyer P, Forrest JN (1982) Evidence for an inhibitory adenosine receptor in the rectal gland of Squalus acanthias. Bull Mt Desert Isl Biol Lab 22: S19-S23

    Google Scholar 

  • Price KS Jr, Daiber FC (1967) Osmotic environments during fetal development of dogfish, Mustelus canus (Mitchell) and Squalus acanthias Linnaeus, and some comparisons with skates and rays. Physiol Zool 40: 248–260

    CAS  Google Scholar 

  • Read LJ (1968) Urea and trimethylamine oxide levels in elasmobranch embryos. Biol Bull 135: 537–547

    CAS  Google Scholar 

  • Robertson JD (1975) Osmotic constituents of the blood plasma and parietal muscle of Squalus acanthias. Biol Bull 148: 303–319

    PubMed  CAS  Google Scholar 

  • Shuttleworth TJ (1982) Amphotericin B and the elasmobranch rectal gland: implications for the relationship between oxygen consumption and ion transport. J Exp Zool 221: 255–258

    PubMed  CAS  Google Scholar 

  • Shuttleworth TJ (1983 a) Role of calcium in MP-mediated effects in the elasmobranch rectal gland. Am J Physiol 245: R894-R900

    PubMed  CAS  Google Scholar 

  • Shuttleworth TJ (1983 b) Haemodynamic effects of secretory agents on the isolated elasmobranch rectal gland. J Exp Biol 103: 193–204

    PubMed  CAS  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1978) Cyclic AMP and ouabain-binding sites in the rectal gland of the dogfish Scyliorhinus canicula. J Exp Zool 206: 297–302

    CAS  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1979) Ouabain-binding in the rectal gland of Squalus — the effect of cyclic AMP, sodium and” furosemide. Bull Mt Desert Isl Biol Lab 19: 6–8

    Google Scholar 

  • Shuttleworth TJ, Thompson JL (1980 a) Oxygen consumption in the rectal gland of the dogfish, Scyliorhinus canicula and the effects of cyclic AMP. J Comp Physiol 136: 39–43

    CAS  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1980b) The mechanism of cyclic AMP stimulation of secretion in the dogfish rectal gland. J Comp Physiol 140: 209–216

    CAS  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1983) The significance of vasodilation in the secretory response of the rectal gland. Bull Mt Desert Isl Biol Lab 23: 22–24

    Google Scholar 

  • Shuttleworth TJ, Thompson JL (1986) Perfusion-secretion relationships in the isolated elasmobranch rectal gland. J Exp Biol 125: 373–384

    PubMed  CAS  Google Scholar 

  • Shuttleworth TJ, Thorndyke MC (1984) An endogenous peptide stimulates secretory activity in the elasmobranch rectal gland. Science 225: 319–321

    PubMed  CAS  Google Scholar 

  • Siegel NJ, Silva P, Epstein FH, Maren TH, Hayslett JP (1975) Functional correlates of the dogfish rectal gland during in vitro perfusion. Comp Biochem Physiol 51 A: 593–597

    Google Scholar 

  • Siegel NJ, Schon DA, Hayslett JP (1976) Evidence for active chloride transport in dogfish rectal gland. Am J Physiol 230: 1250–1254

    PubMed  CAS  Google Scholar 

  • Silva P, Stoff J, Field M, Fine L, Forrest JN, Epstein FH (1977) Mechanism of active chloride secretion by shark rectal gland: role of Na-K-ATPase in chloride transport. Am J Physiol 233: F298-F306

    PubMed  CAS  Google Scholar 

  • Silva P, Stoff J, Epstein FH (1979) Indirect evidence for enhancement of Na-K-ATPase activity with stimulation of rectal gland secretion. Am J Physiol 237: F468-F472

    PubMed  CAS  Google Scholar 

  • Silva P, Epstein JA, Stevens A, Spokes K, Epstein FH (1983) Ouabain binding in rectal gland Squalus acanthias. J Membr Biol 75: 105–114

    PubMed  CAS  Google Scholar 

  • Silva P, Stoff JS, Leone DR, Epstein FH (1985) Mode of action of somatostatin to inhibit secretion by shark rectal gland. Am J Physiol 249: R329-R334

    PubMed  CAS  Google Scholar 

  • Smith HW (1931a) The absorption and excretion of water and salts by the elasmobranch fishes I Fresh-water elasmobranchs. Am J Physiol 98: 279–295

    CAS  Google Scholar 

  • Smith HW (1931b) The absorption and excretion of water and salts by the elasmobranch fishes II Marine elasmobranchs. Am J Physiol 98: 296–310

    CAS  Google Scholar 

  • Smith HW (1936) The retention and physiological role of urea in the elasmobranchii. Biol Rev 11: 49–82

    CAS  Google Scholar 

  • Solomon R, Taylor M, Stoff JS, Silva P, Epstein FH (1984 a) In vivo effect of volume expansion on rectal gland function. I Humoral factors. Am J Physiol 246: R63-R66

    PubMed  CAS  Google Scholar 

  • Solomon RJ, Taylor M, Rosa R, Silva P, Epstein FH (1984 b) In vivo effect of volume expansion on rectal gland function. II Hemodynamic changes. Am J Physiol 246: R67-R71

    PubMed  CAS  Google Scholar 

  • Solomon R, Taylor M, ’Dorsey D, Silva P, Epstein FH (1985 a) Atriopeptin stimulation of rectal gland function in Squalus acanthias. Am J Physiol 249: R348-R354

    PubMed  CAS  Google Scholar 

  • Solomon R, Taylor M, Sheth S, Silva P, Epstein FH (1985 b) Primary role of volume expansion in stimulation of rectal gland function. Am J Physiol 248: R638-R640

    PubMed  CAS  Google Scholar 

  • Stoff JS, Silva P, Field M, Forrest JN, Stevens A, Epstein FH (1977 a) Cyclic AMP regulation of active chloride transport in the rectal gland of marine elasmobranchs. J Exp Zool 199: 443–448

    PubMed  CAS  Google Scholar 

  • Stoff JS, Hallac R, Rosa R, Silva P, Fischer J, Epstein FH (1977 b) The role of vasoactive intestinal peptide (VIP) in the regulation of active chloride secretion in the rectal gland of Squalus acanthias. Bull Mt Desert Isl Biol Lab 17: 66

    Google Scholar 

  • Stoff JS, Rosa R, Hallac R, Silva P, Epstein FH (1979) Hormonal regulation of active chloride transport in the dogfish rectal gland. Am J Physiol 237: F138-F144

    PubMed  CAS  Google Scholar 

  • Swenson ER, Maren TH (1984) Effects of acidiosis and carbonic anhydrase inhibition in the elasmobranch rectal gland. Am J Physiol 247: F86-F92

    PubMed  CAS  Google Scholar 

  • Thorndyke MC, Shuttleworth TJ (1986) Biochemical and physiological studies on peptides from the elasmobranch gut. Peptides 6 Suppl 3: 369–372

    Google Scholar 

  • Thorson TB (1967) Osmoregulation in fresh-water elasmobranchs. In: Gilbert PW, Mathewson RF, Rail DP (eds) Sharks, Skates and Rays. John Hopkins, Baltimore, pp 265–270

    Google Scholar 

  • Thorson TB (1970) Freshwater stingrays, Potamotrygon spp: failure to concentrate urea when exposed to saline medium. Life Sci 9: 893–900

    CAS  Google Scholar 

  • Thorson TB (1971) Movement of bull sharks, Carcharhinus leucas, between Caribbean Sea and Lake Nicaragua demonstrated by tagging. Copeia 1971: 336–338

    Google Scholar 

  • Thorson TB (1982) Life history implications of a tagging study of the largetooth sawfish, Pristis perottete, in the Lake Nicaragua-Rio San Jan system. Environ Biol Fishes 7: 207–228

    Google Scholar 

  • Thorson TB, Watson DE (1975) Reassignment of the African freshwater stingray Potamotrygon garouanensis to the genus Dasyatis on physiological and morphological grounds. Copeia 1975: 701–712

    Google Scholar 

  • Thorson TB, Cowan CM, Watson DE (1967)Potamotrygon spp: Elasmobranchs with low urea content. Science 158: 375–377

    PubMed  CAS  Google Scholar 

  • Thorson TB, Cowan CM, Watson DE (1973) Body fluid solutes of juveniles and adults of the euryhaline bull shark Carcharhinus leucas from freshwater and saline environments. Physiol Zool 46:29–42

    CAS  Google Scholar 

  • Thorson TB, Wotton RM, Georgi TA (1978) Rectal gland of freshwater stingrays, Potamotrygon spp. (Chondrichthys: Potamotrygonidae). Biol Bull 154: 508–516

    PubMed  CAS  Google Scholar 

  • Urist MR (1962) Calcium and otherions in blood and skeleton of Nicaraguan Fresh-water shark. Science 137: 985–986

    Google Scholar 

  • Welsh MJ, Smith PL, Frizzell RA (1983) Intracellular chloride activities in the isolated perfused shark Squalus acanthias rectal gland. Am J Physiol 245: F640-F644

    PubMed  CAS  Google Scholar 

  • Wong TM, Chan DKO (1977) Physiological adjustments to dilution of the external medium in the lip-shark Hemisclium plagiosum (Bennett) II Branchial, renal and rectal gland function. J Exp Zool 200:85–96

    CAS  Google Scholar 

  • Yancey PH, Somero GN (1978) Urea-requiring lactate dehydrogenases of marine elasmobranch fishes. J Comp Physiol 125: 135–141

    CAS  Google Scholar 

  • Yancey PH, Somero GN (1980) Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J Exp Zool 212: 205–213

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shuttleworth, T.J. (1988). Salt and Water Balance — Extrarenal Mechanisms. In: Shuttleworth, T.J. (eds) Physiology of Elasmobranch Fishes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73336-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73336-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73338-3

  • Online ISBN: 978-3-642-73336-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics