Skip to main content

RAS Genes and Growth Control in the Yeast Saccharomyces cerevisiae

  • Chapter
Oncogenes and Growth Control

Abstract

Ras 1 genes activated by point mutations have dramatic effects on the proliferation of mammalian cells (see Marshall, this Vol. and Land, this Vol.). However, the physiological function of the proteins they encode is not known. The identification of RAS genes in yeast has made it possible to study their function using the sophisticated genetic and biochemical techniques available in this organism. This review describes data which indicate that RAS proteins are elements of the cAMP effector pathway in S. cerevisiae, and then discusses RAS function at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birchmeier C, Broek D, Wigler M (1985) RAS proteins can induce meiosis in Xenopus oocytes. Cell 43: 615–621

    Article  Google Scholar 

  • Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M (1985) Differential activation of yeast adenylate cyclase by wt and mutant RAS proteins. Cell 41: 763–769

    Article  CAS  PubMed  Google Scholar 

  • Cassel D, Selinger Z (1978) Mechanism of adenylate cyclase activation through the,-adrenergic receptor: Catecholamine-induced displacement of bound GDP by GTP. Proc Natl Acad Sci USA 9: 4155–4159

    Article  Google Scholar 

  • DeFeo-Jones D, Scolnick E, Koller R, Dhar R (1983) ras-related gene sequences identified and isolated from Saccharomyces cerevisiae. Nature 306: 707–709

    Google Scholar 

  • DeFeo-Jones D, Tatchell K, Robinson LC, Sigal IS, Vass WC, Lowy DR, Scolnick EM (1985) Mammalian and yeast ras gene products: Biological function in their heterologous systems. Science 228: 179–184

    Article  CAS  PubMed  Google Scholar 

  • Dhar R, Nieto A, Koller R, Defeo-Jones D, Scolnick E (1984) Nucleotide sequence of two rasHrelated genes isolated from the yeast Saccharomyces cerevisiae. Nucl Acids Res 12: 3611–3618

    Article  CAS  PubMed  Google Scholar 

  • Fasano O, Aldrich T, Tamanoi F, Taparowsky E, Furth M, Wigler M (1984) Analysis of the transforming potential of the human H-ras gene by random mutagenesis. Proc Natl Acad Sci USA 81: 4008–4012

    Article  CAS  PubMed  Google Scholar 

  • Fraenkel DG (1985) On ras gene function in yeast. Proc Natl Acad Sci USA 82: 4740–4744

    Article  CAS  PubMed  Google Scholar 

  • Gallwitz D, Dorath C, Sander C (1983) A yeast gene encoding a protein homologous to the human C-has/bas proto-oncogene product. Nature 306: 704–707

    Article  CAS  PubMed  Google Scholar 

  • Kataoka T, Powers S, McGill C, Fasano O, Strathern J, Broach J, Wigler M (1984) Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37: 437–445

    Article  CAS  PubMed  Google Scholar 

  • Kataoka T, Broek D, Wigler M (1985a) DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43: 493–505

    Article  CAS  PubMed  Google Scholar 

  • Kataoka T, Powers S, Cameron S, Fasano O, Goldfarb M, Broach J, Wigler M (1985b) Functional homology of mammalian and yeast RAS genes. Cell 40: 19–26

    Article  CAS  PubMed  Google Scholar 

  • Lad PM, Nielsen TB, Preston MS, Rodbell M (1980) The role of the guanine nucleotide exchange reaction in the regulation of the ß-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes. J Biol Chem 255: 988–995

    Google Scholar 

  • Matsumoto K, Uno I, Oshima Y, Ishikawa T (1982) Isolation and characterization of yeast mutants deficient in adenylate cyclase and cyclic AMP-dependent protein kinase. Proc Natl Acad Sci USA 79: 2355–2359

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1983a) Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase. Cell 32: 417–423

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1983b) Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase. Exp Cell Res 146: 151–161

    Article  CAS  PubMed  Google Scholar 

  • Powers S, Kataoka T, Fasano O, Goldfarb M, Strathern J, Broach J, Wigler M (1984) Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36: 607–612

    Article  CAS  PubMed  Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101: 202–211

    Article  CAS  PubMed  Google Scholar 

  • Tamanoi F, Walsh M, Kataoka T, Wigler M (1984) A product of yeast RAS2 gene is a guanine nucleotide binding protein. Proc Natl Acad Sci USA 81: 6924–6928

    Article  CAS  PubMed  Google Scholar 

  • Tatchell K, Chaleff D, Defeo-Jones D, Scolnick E (1984) Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability. Nature 309: 523–527

    Article  CAS  PubMed  Google Scholar 

  • Tatchell K, Robinson LC, Breitenbach M (1985) RAS2 of Saccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation. Proc Natl Acad Sci USA 82: 3785–3789

    Google Scholar 

  • Temeless GL, Gibbs JB, D’Alonzo JS, Sigal IS, Scolnick EM (1985) Yeast and mammalian ras proteins have conserved biochemical properties. Nature 313: 700–703

    Article  Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40: 27–36

    Article  CAS  PubMed  Google Scholar 

  • Uno I, Matsumoto K, Ishikawa T (1982) Characterization of cyclic AMP-requiring yeast mutants altered in the regulatory subunit of protein kinase. J Biol Chem 257: 14110–14115

    CAS  PubMed  Google Scholar 

  • Uno I, Matsumoto K, Aduchi K, Ishikawa T (1983) Genetic and biochemical evidence that trehalose is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem 258: 10867–10872

    CAS  PubMed  Google Scholar 

  • Uno I, Mitsuzawa H, Matsumoto K, Tanaka K, Oshima T, Ishikawa T (1985) Reconstitution of the GTP-dependent adenylate cyclase from products of the yeast CYRI and RAS2 genes in Escherichia coll. Proc Natl Acad Sci USA 82: 7855–7859

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fasano, O. (1986). RAS Genes and Growth Control in the Yeast Saccharomyces cerevisiae . In: Kahn, P., Graf, T. (eds) Oncogenes and Growth Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73325-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73325-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18760-8

  • Online ISBN: 978-3-642-73325-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics